Комбинированная система плавки гололеда и сглаживания графиков нагрузки с использованием накопителей энергии на основе аккумуляторных батарей и суперконденсаторов большой мощности, находящихся в составе автономной энергоустановки

Использование: в области электротехники для плавки гололеда на воздушных линиях электропередачи. Технический результат - возможность плавить гололед при помощи накопителей энергии большой мощности находящихся в составе газопоршневых установок, без покупки дополнительного оборудования. Установка содержит трехфазный мостовой преобразователь на полностью управляемых полупроводниковых вентилях, шунтированных встречно включенными диодами, трехполюсный выключатель и последовательно соединенный трехфазный дроссель, блоки аккумуляторных батарей или суперконденсаторов большой мощности (далее - блоки), в первом случае, используемые для сглаживания графиков нагрузки, во втором - для плавки гололеда, в первом случае замкнуты двухполюсными выключателями, образуя одну группу из параллельно соединенных блоков, во втором - разомкнуты, в первом случае соединены контактами однополюсного выключателя с эмиттерными и коллекторными выводами вентилей преобразователя, во втором - разомкнуты, в первом случае однополюсные выключатели, позволяющие соединить последовательно блоки в одну группу, разомкнуты, во втором - замкнуты для увеличения напряжения подаваемого на провод, один выход группы через двухполюсный выключатель «плюсом» соединен с проводом воздушной линии, а второй выход группы - «минусом» соединен с землей, при этом плавка гололеда постоянным током осуществляется по схеме «провод - земля». 1 ил.

 

Изобретение относится к области электротехники и может найти применение в автономных системах электроснабжения, уже оснащенных накопителями электроэнергии (НЭ), которыми комплектуются газопоршневые установки (ГПУ), и требующих сглаживания графика нагрузки и плавки гололеда на воздушных линиях электропередачи.

В отличие от крупных энергосистем автономные энергосистемы, находящиеся в отдаленных районах, обладают значительно меньшим потенциалом регулирования за счет изменения мощности генерирующих объектов и межсистемных перетоков. Изолированные энергосистемы характеризуются весьма ограниченным количеством генерирующих объектов и групп потребителей. В качестве автономного источника основного и резервного электроснабжения все чаще используются ГПУ. В ходе исследований было определено, что наиболее рационально использовать электрохимические накопители в автономных системах для ГПУ на попутном газе для снижения затрат на покупку топлива, при этом именно накопители обеспечивают работоспособность установок при набросах нагрузки (см. Bakhteev K., Fedotov A., Chernova N., Misbakhov R. Methodological Approaches to the Choice of Energy Storage and Optimization of Their Parameters to Improve the Electric Power Quality in Various Types of Electric Power Systems / Proceedings of the 10th International Scientific Symposium on Electrical Power Engineering ELEKTROENERGETIKA 2019. - - Slovak Republic. - 2019, pp. 488-493.). Применение НЭ в комплекте с ГПУ, позволяют предотвратить провалы частоты переменного тока при возмущающих воздействиях нагрузки, обеспечить поддержание требуемого уровня остаточного напряжения при коротких замыканиях в сети (см. Bakhteev K., Fedotov A. and Misbakhov R. The Improving quality of power supply to industrial consumers using high-power energy storage / 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 2018, pp. 1-5.), выровнять график нагрузки, снизить потери энергии в электросетях (см. Брагин А.А. Алгоритм формирования графиков электрических нагрузок предприятия с применением аккумуляторных батарей в качестве потребителей-регуляторов мощности / Диссертация канд. тех. наук. - СПб. - 2013.).

Другой важной технической задачей, направленной на повышение надежности электроснабжения потребителей, является плавка гололеда на воздушных линиях электропередач. Для ее решения применяют разнообразные преобразователи, выполненные также на полупроводниковых силовых ключевых элементах. Однако они используются по назначению сравнительно непродолжительное время, только в периоды гололедообразования. В связи с этим целесообразно, объединение функций сглаживания графиков нагрузки и плавки гололеда в одном устройстве, НЭ большой мощности, находящихся в составе ГПУ, для экономии капитальных затрат в связи с сокращением общего объема отдельно устанавливаемого оборудования.

Известны комбинированные установки для компенсации реактивной мощности и плавки гололеда, выполненные на основе трехфазного мостового преобразователя (двух или трехуровневого) на полностью управляемых силовых полупроводниковых приборах - IGBT или запираемых тиристорах (см. Патент РФ №2505903 от 27.01.2014 г.).

Недостатком этой установки является то, что для плавки гололеда таким методом необходим большой ток и как следствие мощная энергоустановка, поэтому данное устройство подходит для применения на воздушных линиях с напряжением от 110 кВ и выше.

Задачей изобретения является разработка комбинированной системы плавки гололеда и сглаживания графиков нагрузки с использованием накопителей энергии на основе аккумуляторных батарей и суперконденсаторов большой мощности, находящихся в составе автономной энергоустановки, где устранены недостатки прототипа.

Техническим результатом является возможность плавить гололед при помощи НЭ большой мощности находящихся в составе ГПУ, в автономных системах электроснабжения, на воздушных линиях напряжением 0,4 кВ, 6-10 кВ, без покупки дополнительного оборудования.

Технический результат достигается тем, что комбинированная система плавки гололеда и сглаживания графиков нагрузки с использованием накопителей энергии на основе аккумуляторных батарей и суперконденсаторов большой мощности, находящихся в составе автономной энергоустановки, содержащая трехфазный мостовой преобразователь на полностью управляемых полупроводниковых вентилях, шунтированных встречно включенными диодами, трехполюсный выключатель и последовательно соединенный трехфазный дроссель, где блоки аккумуляторных батарей или суперконденсаторов большой мощности (далее - блоки), в первом случае, используемые для сглаживания графиков нагрузки, во втором - для плавки гололеда, в первом случае замкнуты двухполюсными выключателями, образуя одну группу из параллельно соединенных блоков, во втором - разомкнуты, в первом случае соединены контактами однополюсного выключателя с эмиттерными и коллекторными выводами вентилей преобразователя, во втором - разомкнуты, в первом случае однополюсные выключатели, позволяющие соединить последовательно блоки в одну группу, разомкнуты, во втором - замкнуты для увеличения напряжения подаваемого на провод, один выход группы через двухполюсный выключатель «плюсом» соединен с проводом воздушной линии, а второй выход группы - «минусом» соединен с землей, при этом плавка гололеда постоянным током осуществляется по схеме «провод - земля».

Блоки в нормальном режиме предназначены для накопления электроэнергии из сети в период низкого спроса и отдачи ее в сеть или на нагрузку в период высокого спроса, а при плавке гололеда блоки подключаются последовательно, для увеличения напряжения подаваемого на провод и работают по схеме плавки гололеда с использованием рабочего заземления «провод - земля».

На чертеже представлена схема комбинированной системы плавки гололеда и сглаживания графиков нагрузки с использованием НЭ на основе аккумуляторных батарей и суперконденсаторов большой мощности, находящихся в составе автономной энергоустановки.

Цифрами на чертеже обозначены:

1-3 - последовательно соединенные полностью управляемые полупроводниковые ключи - IGBT-транзисторы, шунтированные встречно включенными диодами;

4 - трехполюсный выключатель;

5 - трехфазный дроссель;

6 - двухполюсный выключатель;

7 - схема плавки гололеда «провод - земля»;

8 - блок аккумуляторных батарей или суперконденсаторов большой мощности с возможностью параллельного и последовательного подключения;

8.1.1-8.1.N - блоки аккумуляторных батарей или суперконденсаторов большой мощности от 1 до N;

8.2.1-8.2.N - однополюсные выключатели, служащие для последовательного соединения блоков;

8.3.1-8.3.N - двухполюсные выключатели, служащие для параллельного соединения блоков;

9 - однополюсный выключатель.

Предлагаемая комбинированная установка для сглаживания графиков нагрузки и плавки гололеда выполнена на основе мостового преобразователя, содержащего три плеча 1-3 на последовательно соединенных полностью управляемых полупроводниковых ключах - IGBT-транзисторах, шунтированных встречно включенными диодами. Со стороны переменного тока преобразователь подсоединен к трем фазам А, В, С вторичной обмотки трансформатора или сети переменного тока через трехполюсный выключатель 4 и трехфазный дроссель 5. К выходу постоянного тока преобразователя подключен блок аккумуляторных батарей и суперконденсаторов большой мощности 8.

По первому варианту установки в режиме сглаживания графиков нагрузки, блоки аккумуляторных батарей и суперконденсаторов 8.1.1-8.1.N подключены параллельно двухполюсными выключателями 8.3.1-8.3.N, разомкнутыми в режиме плавки гололеда, соединены контактами однополюсного выключателя 9, разомкнутого в режиме плавки гололед, с эмиттерными (коллекторными) выводами вентилей преобразователя.

По второму варианту в режиме плавки гололеда блоки аккумуляторных батарей и суперконденсаторов 8.1.1-8.1.N подключены последовательно однополюсными выключателями 8.2.1-8.2.N для увеличения напряжения подаваемого на провод, разомкнутыми в режиме сглаживания графиков нагрузки, один выход блоков 8 через двухполюсный выключатель 6 «плюсом» соединен с проводом воздушной линии, а второй выход блоков - «минусом» соединен с землей, при этом плавка гололеда постоянным током осуществляется по существующей схеме «провод - земля» 7.

Установка работает следующим образом.

В режиме сглаживания графиков нагрузки блоки батарей 8, соединенных параллельно двухполюсными выключателями 8.31-8.3.N с использованием обратимых преобразователей AC/DC, состоящих из модулей на IGBT-транзисторах 1-3, через трехполюсный выключатель 4 и трехфазный дроссель 5, который используется как выходной фильтр на заданный коэффициент пульсации напряжения, отдают запасенную энергию в сеть. Экономию топлива в электротехническом комплексе можно обеспечить, если график нагрузки существенно неравномерный. Тогда в часы минимальной нагрузки блоки накопителей энергии 8 заряжаются, а в часы максимальной нагрузки отдают свою энергию в сеть.

В режиме плавки гололеда выключатель 9 размыкают, двухполюсные выключатели 8.3.1-8.3.N размыкают, а однополюсные выключатели 8.2.1-8.2.N замыкают, образуя последовательное соединение блоков, тем самым увеличивая напряжение, подаваемое на провод, замыкают двухполюсный выключатель 6 и начинают плавить гололед по схеме «провод-земля» 7.

Комбинированная система плавки гололеда и сглаживания графиков нагрузки с использованием накопителей энергии на основе аккумуляторных батарей и суперконденсаторов большой мощности, находящихся в составе автономной энергоустановки, содержащая трехфазный мостовой преобразователь на полностью управляемых полупроводниковых вентилях, шунтированных встречно включенными диодами, трехполюсный выключатель и последовательно соединенный трехфазный дроссель, отличающаяся тем, что блоки аккумуляторных батарей или суперконденсаторов большой мощности (далее - блоки), в первом случае, используемые для сглаживания графиков нагрузки, во втором - для плавки гололеда, в первом случае замкнуты двухполюсными выключателями, образуя одну группу из параллельно соединенных блоков, во втором - разомкнуты, в первом случае соединены контактами однополюсного выключателя с эмиттерными и коллекторными выводами вентилей преобразователя, во втором - разомкнуты, в первом случае однополюсные выключатели, позволяющие соединить последовательно блоки в одну группу, разомкнуты, во втором - замкнуты для увеличения напряжения подаваемого на провод, один выход группы через двухполюсный выключатель «плюсом» соединен с проводом воздушной линии, а второй выход группы - «минусом» соединен с землей, при этом плавка гололеда постоянным током осуществляется по схеме «провод - земля».



 

Похожие патенты:

Изобретение относится к подаче электроэнергии к электрическим сетям, контактирующим с токоприемниками транспортных средств. Способ усиления системы тягового электроснабжения заключается в том, что с помощью источника тягового напряжения на тяговой станции подают это напряжение на тяговую сеть, а также подключают накопитель энергии к тяговой сети.

Изобретение относится к электроэнергетике и может быть применено в промышленных энергорайонах для расширения области допустимых режимов генерирующих установок источников распределенной генерации при провалах напряжения, возникающих в сетях внешнего и внутреннего электроснабжения 6-220 кВ, для предотвращения излишних отключений генерирующих установок устройствами релейной защиты.

Изобретение относится к области технической диагностики и эксплуатации судовых дизель-генераторных агрегатов (ДГА). Способ определения перерасхода топлива с целью определения технического состояния и соответствия используемого топлива штатному дизельному топливу ДГА заключается в том, что для конкретных режимов работы результаты измерений расхода топлива, активной мощности, коэффициента мощности по показаниям штатных измерительных приборов вводят в математическую устанавливающую связь расхода топлива исправного ДГА при использовании штатного дизельного топлива с мощностью и электрической нагрузки.

Изобретение относится к энергоснабжению буровой установки. Технический результат заключается в повышении коэффициента использования системы подачи энергии.

Изобретение относится к области электротехники и может быть использовано на предприятиях коммунального обслуживания. Техническим результатом является исключение перерывов подачи электроэнергии и снижение затрат на ее производство.

Изобретение относится к области электроэнергетики и теории автоматического управления и может быть использовано при эксплуатации аккумуляторных батарей. Устройство регулирования балластной нагрузкой аккумуляторных батарей на основе искусственной нейронечеткой сети, состоящее из аккумуляторных батарей, балластной нагрузки, нейронечеткого регулятора и блока управления, отличается тем, что в него дополнительно введены устройство с программируемой логикой и блок контроля, соединенные выходами с нейронечетким регулятором, причем блок контроля входом соединен с аккумуляторными батареями, а выход нейронечеткого регулятора соединен с блоком управления.

Использование: в области электроэнергетики. Технический результат – повышение скорости реагирования, гибкости и эксплуатационной надежности электростанций.

Использование: в области электроэнергетики. Технический результат - повышение надежности.

Изобретение относится к области электротехники и может быть использовано в устройстве и способе управления, используемых при шунтировании блоков питания. Технический результат - уменьшение пульсации выходного напряжения.

Использование: в области электротехники. Технический результат - повышение быстродействия.
Использование: в области электротехники. Технический результат - увеличение ресурса контактного провода и снижение потерь энергии на обогрев.
Наверх