Способ получения полидиэтилсилоксанов

Настоящее изобретение относится к способу получения полидиэтилсилоксанов общей формулы где n обозначает целые числа от 15 до 500. Данный способ включает анионную полимеризацию гексаэтилциклотрисилоксана. Полимеризацию проводят в толуоле при 60°С в присутствии инициатора. В качестве инициатора используют н-бутиллитий. В качестве активатора полимеризации используют диметилформамид. Технический результат – создание нового способа получения полидиэтилсилоксанов, обеспечивающего образование «живых» монофункциональных полидиэтилсилоксанов с OLi-группой на конце цепи с узким мономодальным молекулярно-массовым распределением, при использовании доступного и дешевого активатора. 1 ил., 3 пр.

 

Изобретение относится к химии и технологии кремнийорганических полимеров и может найти применение при получении полимеров с заданной структурой и свойствами, в частности при получении полимакромономеров, блок-сополимеров и полимеров звездообразной структуры. Данное изобретение относится к новому способу получения «живых» полидиэтилсилоксановых полимеров.

Полидиэтилсилоксаны представляют собой кремнийорганические полимеры с гибкой силоксановой цепью, которые демонстрируют сложное фазовое поведение. Полидиэтилсилоксаны с молекулярной массой выше 30000 г/моль характеризуются наличием мезофазы при температуре, близкой к комнатной, и двух или более кристаллических фаз при более низких температурах [Lee C.L., Johannson O.K., Flanigan O.L., Hahn P. ACS Polym. Prepr. 1969, 10(2), 1319-26; Beatty C.L., Pochan J.M., Froix M.F., Hinman D.D. Macromolecules. 1975, 8(4), 547-51; Froix M.F., Beatty C.L., Pochan J.M., Hinman D.D. J. Polym. Sci: Polym. Phys. 1975, 13, 1269-74; Beatty C.L., Karasz F.E. J. Polym. Sci.: Polym. Phys. 1975, 13, 971-5; Pochan J.M., Beatty C.L., Hinman D.D. J. Polym. Sci.: Polym. Phys. 1975, 13, 977-83; Papkov V.S., Godovsky Y.K., Svistunov V.S., Litinov V.M., Zhdanov A. J. Polym. Sci.: Polym. Phys. 1984, 22, 3617-32; Tsvankin D.Y., Papkov V.S., Zhukov V.P., Godovsky Y.K., Svistunov V.S., Zhdanov A.A. J. Polym. Sci.: Polym. Phys. 1985, 23, 1043-56; Godovsky Y.K., Papkov V.S. Macromol. Chem.: Macromol. Symp.1986, 4, 71-87; Pochan J.M., Hinman D.D., Froix M.F. Macromolecules. 1976, 9(4), 611-6; Wiedemann H.G., Wunderlich В., Wesson J.P. Mol. Cryst. Liq. Cryst. 1988, 155, 469-75; G., Loufakis K., M. Polymer 1990, 31, 1538-45; Molenberg A., M. Macromolecules 1997, 30, 8332-7]. Пленки из сшитого полидиэтилсилоксана также кристаллизуются и могут претерпевать переход в мезофазное состояние при одноосном напряжении [Papkov V., Turetski A., Out G.J., M. (2002). International Journal of Polymeric Materials and Polymeric Biomaterials. 2002, 51(4), 369-391]. Эти свойства полидиэтилсилоксанов стимулируют интерес к их использованию в качестве одного из блоков при получении блок-сополимеров с памятью формы [Белошенко В.А., Варюхин В.Н., Возняк Ю.В. Успехи химии. 2005, 74(3), 285-306]. Моно- или дифункциональные полидиэтилсилоксановые блоки, используемые для получения таких блок-спополимеров, должны обладать узким мономодальным молекулярно-массовым распределением и полидисперсностью, близкой к 1.

Основным способом получения полидиэтилсилоксанов является анионная полимеризация гексаэтилциклотрисилоксана.

Например, известен способ получения полидиэтилсилоксанов с концевыми гидроксисилильными группами полимеризацией гексаэтилциклотрисилоксана, в котором используют избыток NaOH в качестве инициатора полимеризации и 12-краун-4 (1,4,7,10-тетраоксациклододекан) в качестве активатора полимеризации [Hedden R.C., Cohen С. Polymer. 2000, 41, 6975-6979]. В результате такой полимеризации были получены полидиэтилсилоксаны с молекулярной массой до 146000. Указанный способ полимеризации позволяет относительно просто при комнатной температуре синтезировать полидиэтилсилоксаны с концевыми гидроксисилильными группами, однако синтезируемые образцы характеризуются большими значениями полидисперсности: даже для полимера с молекулярной массой 6000 полидисперсность равна 1,27, а для полидиэтилсилоксана с молекулярной массой, равной 58000, - достигает 1,91.

Известен способ получения монофункционального «живого» полидиэтилсилоксана с концевой OLi-группой анионной полимеризацией гексаэтилциклотрисилоксана в присутствии втор-бутиллития и активатора полимеризации - криптанда [211] [Molenberg A., М. Macromolecules. 1997, 30, 8332-8337]. Такой способ позволяет получать полидиэтилсилоксаны, характеризующиеся полидисперсностью 1,10 в диапазоне среднечисловых молекулярных масс от 11800 до 66700. При этом полидисперсность образцов варьируется от 1,11 для полидиэтилсилоксана с молекулярной массой 11800 до 1,39 для образца с молекулярной массой 430000.

Еще один способ получения монофункционального «живого» полидиэтилсилоксана с концевой OLi-группой заключается в анионной полимеризации гексаэтилциклотрисилоксана в толуоле при 60°С в присутствии трет-бутиллития и активатора полимеризации - криптанда [211] [Molenberg A, Siffrin S., М. Macromol. Symp. 1996, 102, 199-207]. Таким способом были получены полидиэтилсилоксаны со среднечисловыми молекулярными массами 40200, 95500 и 89400, с полидисперсностью 1,10; 1,16 и 1,21 соответственно. Этот способ является наиболее близким по существенным признакам к заявляемому изобретению и был выбран в качестве прототипа.

Недостатками способов, в которых используется криптанд [221] в качестве активатора полимеризации, являются необходимость проведения процесса в условиях высокого вакуума и в отсутствие влаги, что требует специального оборудования. Кроме того, криптанд [221] отличается высокой стоимостью, чрезвычайной чувствительностью к влаге и различным примесям, и для его применения требуется трудоемкая предварительная очистка.

Задачей заявляемого изобретения являлось создание нового способа получения полидиэтилсилоксанов, обеспечивающего образование «живых» монофункциональных полидиэтилсилоксанов с OLi-группой на конце цепи с узким мономодальным молекулярно-массовым распределением, при использовании доступного и дешевого активатора.

Задача решается заявляемым способом получения полидиэтилсилоксанов общей формулы

где n обозначает целые числа от 15 до 500,

который включает анионную полимеризацию гексаэтилциклотрисилоксана, проводимую в толуоле при 60°С, при этом в качестве инициатора используют н-бутиллитий, а в качестве активатора полимеризации - диметилформамид.

Схема реакции представлена ниже:

где n обозначает целые числа от 15 до 500.

Диметилформамид, используемый в качестве активатора в заявляемом способе, не требует особых условий очистки и хранения: его просто сушат перегонкой при пониженном давлении над оксидом бария, в отличие от криптанда [211], активатора, применяемого в прототипе, который необходимо предварительно перегонять в высоком вакууме в кварцевой посуде и хранить при -20°С.

Контроль за полимеризацией ведут путем анализа проб реакционной смеси методом гель-проникающей хроматографии после обрыва «живой» растущей цепи полидиэтилсилоксана с OLi-группой на конце триметилхлорсиланом по схеме:

На фиг. 1 приведена кривая ГПХ полидиэтилсилоксана, полученного в условиях, описанных далее в примере 3.

Молекулярную массу синтезируемых заявляемым способом полидиэтилсилоксанов можно регулировать путем изменения соотношения исходных реагентов и продолжительности процесса. При этом образуются полидиэтилсилоксаны с молекулярной массой от 1600 до 51000 с мономодальным молекулярно-массовым распределением и полидисперсностью ≤1,2.

Главными преимуществами заявляемого способа перед прототипом являются доступность и низкая стоимость активатора полимеризации, кроме того, подготовка этого активатора к использованию не является трудоемкой и не требует особых условий и специального оборудования.

Технический результат состоит в разработке нового технологичного способа, позволяющего получать «живые» монофункцинальные полидиэтилсилоксаны с OLi группой на конце цепи с узким мономодальным молекулярно-массовым распределением из доступных реагентов.

Изобретение иллюстрируется приведенными ниже примерами.

Пример 1

Полимеризацию проводят в инертной атмосфере. Смесь 0,6988 г (2,28×10-3 моль) гексаэтилциклотрисилоксана, 4,4 мкл (6,98×10-6 моль) н-BuLi и 0,35 мл толуола перемешивают при комнатной температуре в течение 20 ч, затем добавляют 1,62 мкл ДМФА (6,98×10-6 моль) и перемешивают реакционную массу при 60°С в течение 6 ч. После чего добавляют триметилхлорсилан для нейтрализации OLi-групп. Полученный продукт характеризуется следующими молекулярно-массовыми параметрами: Mn=26000, Mw=28000, Mw/Mn=1,07.

Пример 2

Полимеризацию проводят в инертной атмосфере. Смесь 0,6988 г (2,28×10-3 моль) гексаэтилциклотрисилоксана, 4,4 мкл (6,98×10-6 моль) н-BuLi и 0,35 мл толуола перемешивают при комнатной температуре в течение 20 ч, затем добавляют 1,62 мкл ДМФА (6,98×10-6 моль) и перемешивают реакционную массу при 60°С в течение 11 ч. После чего добавляют триметилхлорсилан для нейтрализации OLi-групп. Полученный продукт характеризуется следующими молекулярно-массовыми параметрами: Mn=51000, Mw=60000, Mw/Mn=1,20.

Пример 3

Полимеризацию проводят в инертной атмосфере. Смесь 2,8024 г (9,2×10-3 моль) гексаэтилциклотрисилоксана, 1,15 мл (1,83×10-3 моль) н-BuLi и 3,2 мл толуола перемешивают при комнатной температуре в течение 20 ч. Затем в реакционную колбу добавляют 0,43 мл ДМФА (1,83×10-3 моль) и перемешивают при 60°С в течение 6 ч. После чего добавляют триметилхлорсилан для нейтрализации OLi-групп. Полученный продукт характеризуется следующими молекулярно-массовыми параметрами: Mn=1600, Mw=1800, Mw/Mn=1,10.

Способ получения полидиэтилсилоксанов общей формулы

где n обозначает целые числа от 15 до 500,

включающий анионную полимеризацию гексаэтилциклотрисилоксана, которую проводят в толуоле при 60°С в присутствии инициатора, отличающийся тем, что в качестве инициатора используют н-бутиллитий, а в качестве активатора полимеризации используют диметилформамид.



 

Похожие патенты:

Настоящее изобретение относится к силану, способу получения силана и отверждаемой композиции. Предложен силан формулы (1): Si(R1)m(R2)n(R3)4-(m+n), причем каждый заместитель R3 независимо имеет остаток общей формулы (3).

Изобретение относится к области способов отображения информации и, в частности, к разветвленному кремнийорганическому полимеру и способу изготовления жидкокристаллической панели отображения с разветвленным кремнийорганическим полимером без использования пленки для выравнивания.

Изобретение относится к кремнийсодержащим полимерным композиционным материалам. Предложен композиционный материал, содержащий по меньшей мере 2% об.

Изобретение относится к применению химических композиций для создания самодезинфицирующейся поверхности. Предложен способ создания противомикробного покрытия на поверхности, предусматривающий размещение на указанной поверхности композиции, содержащей смесь органосилана и триэтаноламина, где указанный органосилан имеет структуру (1), где R1 выбран из группы, состоящей из -Н, -СН3 и -СН2-СН3, a R2 выбран из группы, состоящей из 3-аминопропила и 3-хлорпропила.

Изобретение относится к самоотверждающимся композициям, которые обладают способностью поглощать энергию и могут использоваться для изготовления средств индивидуальной бронезащиты.

Изобретение относится к гидрофильным каучуковым материалам. Предложен каучукоподобный или эластомерный полимерный материал, поглощающий более 5% мас.

Изобретение относится к композициям на основе высокомолекулярных соединений, содержащих кремний в основной цепи, а именно к кремнийорганическим композициям, и может быть использовано для получения защитно-декоративных покрытий и пропитки строительных отделочных материалов (гранита, мрамора, кирпича и др.).

Изобретение относится к блокирующим УФ-излучение силикон-гидрогелевым композициям и контактным линзам на их основе. Предложена блокирующая УФ-излучение силикон-гидрогелевую композиция, содержащая, мас.

Изобретение относится к способам формирования силиконового гидрогеля, служащего материалом для контактных линз. Предложен способ формирования силиконового гидрогелевого материала, включающий этапы: получения смеси полимеризуемых компонентов, содержащей по меньшей мере один гидрофильный компонент и по меньшей мере один силиконовый компонент, где по меньшей мере один полимеризуемый компонент содержит по меньшей мере одну гидроксильную группу, причем дополнительно смесь включает борат в количестве, достаточном для уменьшения времени отверждения по сравнению с идентичной смесью, не содержащей боратов; отверждения смеси для получения отвержденного силиконового гидрогелевого материала.
Изобретение относится к термоотверждаемой огнестойкой гибридной смоле на основе реакционноспособных соединений, которая может применяться в качестве огнестойкого связующего в полимерных композиционных материалах.

Изобретение относится к силиконовой каучуковой огнестойкой композиции, отверждаемой при использовании реакции присоединения, в состав которой входит антипирен для улучшения огнестойкости, при этом физические свойства силиконового каучука, использующегося в качестве основы, являются неизменными.
Наверх