Термостойкий тампонажный материал для крепления скважин, обеспечивающий высокую прочность в условиях циклически меняющихся температур и воздействия h2s и co2

Изобретение относится к технологии строительства скважин и может быть использовано для крепления нефтяных и газовых скважин, которые эксплуатируются в условиях циклически меняющихся температур в диапазоне от 25 до 300°С для улучшения прочностных свойств тампонажного материала при воздействии агрессивных сред - сероводорода (H2S) и углекислого газа (СО2). Тампонажный материал для крепления скважин содержит, % мас.: портландцемент тампонажный высокой сульфатостойкости - 85-87; кварцевую муку - 8-10; золу уноса термоактивированную - 5; воду до водосмесевого отношения - 0,4. Технический результат - повышение прочности тампонажного камня при изгибе после твердения и последующего воздействия нескольких циклов нагревания и охлаждения в диапазоне температур от 25 до 300°С при одновременном воздействии агрессивных сред H2S и СО2 в течение длительного времени. 1 з.п. ф-лы, 2 табл.

 

Изобретение относится к технологии строительства скважин и может быть использовано для крепления нефтяных и газовых скважин, которые эксплуатируются в условиях циклически меняющихся температур в диапазоне от 25 до 300°С для улучшения прочностных свойств тампонажного материала при воздействии агрессивных сред - сероводорода (H2S) и углекислого газа (СО2).

Обеспечение герметичности заколонного пространства скважины представляет собой сложную задачу, при решении которой следует учитывать, что в условиях циклически меняющихся температур обсадная колонна скважины подвергается температурному расширению. Дополнительная нагрузка может привести к разрушению тампонажного камня. Моделирование напряжений в системе обсадная труба - цементная труба - горная порода, проведенное нами с использованием специализированного программного обеспечения методом конечных элементов, показало, что в описанных условиях основным фактором, влияющим на целостность материала крепления скважины, является прочность цементного камня на изгиб. Анализ литературных источников показал, что зачастую при разработке и испытаниях тампонажного материала для скважин с циклически меняющимися температурами предел прочности при изгибе не определяется (патент РФ №2418028, МПК C09K 8/467, опубл. 10.05.2011).

Присутствие в пластовых флюидах высокоактивных газов - сероводорода (H2S) и углекислого газа (СО2), особенно в сочетании с термоциклическим воздействием на пласт, ведет к разрушению цементного камня, что свидетельствует о необходимости оценки влияния этих высокоактивных газов на прочностные характеристики тампонажного материала.

Известен тампонажный материал для крепления паронагнетательных скважин, обеспечивающий быстрое твердение при нормальных температурах (t=20-40°С) и высокие прочностные характеристики при температурах t=150-220°С (патент РФ №2530805, МПК C09K 8/467, опубл. 10.10.2014). Тампонажный материал содержит, мас. %: портландцемент (50-70), кремнеземсодержащий компонент, включающий трепел и кварцевый песок в соотношении 1:10 - (30-50), армирующая добавка (0,2-0,3) сверх 100%, пластификатор (0,1-1,0) сверх 100%, хлорид кальция (0,1-3,0) сверх 100%, расширяющая добавка (3,0-5,0) сверх 100%.

Также известен расширяющийся тампонажный материал для крепления нефтяных и газовых скважин в диапазоне температур от 22°С до 110°С (патент РФ №2418028, МПК C09K 8/467, опубл. 10.05.2011). Расширяющийся тампонажный материал содержит, мас. %: портландцемент тампонажный (55-70), сланцевую золу (20-30), магнезит (10-15).

Недостатком известных материалов является снижение прочностных характеристик при циклически меняющихся температурах от 20 до 220°С и отсутствие данных о прочности при изгибе при воздействии высоких температур t>220°С.

Наиболее близким к изобретению по совокупности существенных признаков является тампонажный состав для паронагнетательных скважин, характеризующийся обеспечением стойкости тампонажного камня при условии резкого перепада температур от 22°С до 180°С и одновременном сохранении прочности при сжатии при циклическом термовоздействии в течение длительного времени (патент РФ №2359988, МПК C09K 8/467, опубл. 27.06.2009). Тампонажный материал для паронагнетательных скважин содержит, мас. ч.: портландцемент - (50-80), кварцевый песок (10-45), аморфная двуокись кремния до 10, вода до в/ц (0,35-0,52), ускоритель сроков схватывания - хлорид кальция или хлорид натрия до 5 мас. ч. и/или оксиэтилцеллюлозу до 0,5 мас. ч. и/или пластификатор - лигносульфонаты или Melflux, или Цемпласт МФ марки б.

Недостатком известного материала являются недостаточные прочностные характеристики тампонажного материала при изгибе (1,3-2,0 МПа) при нормальных температурах, а также отсутствие данных о прочности при изгибе при циклически изменяющихся температурах. Кроме того, диапазон перепада температур, при котором проводили испытания тампонажного материала, не перекрывает температурные условия в паронагнетательных скважинах (более 180°С).

Задачей изобретения является обеспечение высокой прочности при изгибе тампонажного камня через 8 суток твердения при температурах t=25-60°С и последующего воздействия нескольких циклов нагревания и охлаждения при температурах t=25-300°С при одновременном воздействии агрессивных сред с H2S и СО2 в течение длительного периода времени.

Эта задача решается за счет того, что термостойкий тампонажный материал, применяемый для крепления скважин, которые эксплуатируются в условиях циклически меняющихся температур при воздействии H2S и СО2, включает: портландцемент тампонажный высокой сульфатостойкости 85-87% мас., кварцевая мука 8-10% мас., зола уноса термоактивированная - 5% мас., вода до в/с 0,4. Указанный тампонажный материал может содержать регуляторы технологических свойств: понизитель фильтрации на основе модифицированных производных полисахаридов различной вязкости 0,4% мас. сверх 100%, модифицированный кремнийорганический полимер 0,2% мас. сверх 100% в качестве пеногасителя, замедлитель или ускоритель сроков схватывания 0,2% мас. сверх 100%.

Предлагаемый тампонажный материал для крепления скважин, которые эксплуатируются в условиях циклически меняющихся температур, применяемый в условиях воздействия H2S и СО2, был приготовлен в лабораторных условиях с применением следующих компонентов:

- портландцемент тампонажный высокой сульфатостойкости без добавок ПЦТ I-G-CC-1 (ГОСТ 1581-96), класс G тип HSR (спецификация API Spec 10 А);

- кварцевая мука марки МКО фракции - 0,2 мм (ТУ 5717-001-16767071-99) или SilverBond 50 - производства ООО «Сибелко Рус»;

- зола уноса термоактивированная класса F ЗУ БУК-Б-2 ГОСТ 25818-2017 или MincpoSil 80 (ТУ 5743-001-12458632-2016), или зола уноса Новочеркасской ГРЭС (ТУ 5712-004-84800065-2010) после снижения доли недожога (потерь при прокаливании) до (2-3) % мас.;

- понизитель фильтрации на основе модифицированных производных полисахаридов различной вязкости WellFix FL 1 (ТУ 2458-032-14023401-2012) или ATREN СЕМ 1 -производства ГК «Миррико»;

- пеногаситель - модифицированный кремнийорганический полимер Полицем Дефом (ТУ 2458-081-97457491-2012) или Atren-Antifoam марки А - производства ГК «Миррико»;

- замедлитель сроков схватывания - PetroRetarder производства «ПетроИнжиниринг».

При решении поставленной задачи создается технический результат, заключающийся в создании термостойкого тампонажного материала для крепления скважин, которые эксплуатируются в условиях циклически меняющихся температур, обеспечивающего прочность при изгибе тампонажного камня не менее 7,0 МПа после 8 суток твердения при температуре (25-60)°С и последующего воздействия нескольких циклов нагревания и охлаждения при температурах t=25-300°С при одновременном воздействии агрессивных сред с H2S и СО2 в течение длительного периода времени. При этом высокий предел прочности при изгибе тампонажного камня достигается независимо от наличия термоциклического воздействия и/или воздействия агрессивных сред с H2S и СО2. Технический результат термостойкого тампонажного материала достигается за счет следующего. Зола уноса, проявляет пуццоланические свойства, снижает пористость тампонажного материала и улучшает его прочностные характеристики. При взаимодействии оксида кремния из кварцевой муки и золы уноса с оксидом кальция из портландцемента образуются низкоосновные гидросиликаты кальция, нерастворимые в воде и стабильные при перепадах температур, что обеспечивает механическую прочность и термическую устойчивость полученного цементного камня при перепадах температур. Связывание оксида кальция как основного компонента, содержащегося в тампонажном материале в нерастворимые термически устойчивые соединения, предотвращает возможность его взаимодействия с углекислым газом и сероводородом и улучшает его прочностные характеристики.

Пример. Приготовление тампонажного раствора, для определения всех параметров, выполнялось по API RP 10 В (ISO 10426-2). В 360 г воды, перемешиваемой при скорости вращения лопастей смесителя 4000 об/мин ± 200 об/мин, вводилось 1,8 г (0,2% мас. сверх 100%) пеногасителя Полицем Дефом; вводилось 3,6 г (0,4% мас. сверх 100%) понизителя фильтрации WellFix FL-1, 1,8 г (0,2% мас. сверх 100%) замедлителя сроков схватывания PetroRetarder. После диспергирования примерно в течение 30 с вводили 900 г тампонажного материала с равномерной скоростью, не быстрее чем в течение 15 с. Тампонажный материал включал: 783 г (85% мас.) ПЦТ I-G-CC-1; 72 г (10% мас.) кварцевой муки марки МКО фракции - 0,2 мм; 45 г (5% мас.) золы уноса термоактивированной MmcpoSil 80. После введения тампонажного материала в течение 15 с контейнер закрывается крышкой и перемешивание продолжается со скоростью 12000 об/мин ± 500 об/мин в течение 35 с ± 1 с. Плотность получающегося тампонажного раствора - 1930 кг/м3. Растекаемость по ГОСТ 26798.1 - 260 мм.

В таблице 1 приведены примеры рецептур разработанного и известного образцов тампонажного материала.

Дальнейшие испытания образцов проводили как для известного тампонажного материала (патент РФ №2359988, МПК C09K 8/467, опубл. 27.06.2009), так и для предложенного впервые с целью установления возможности его применения в условиях меняющихся температур в скважине при воздействии углекислого газа и сероводорода, (таблица 1).

Водоотделение и приготовление образцов балочек, для испытания прочности при изгибе, выполнялось по ГОСТ 26798.1. Приготовление образцов кубиков выполнялось по ГОСТ 26798.2. Определение водоотдачи и времени загустевания выполнялось по API RP 10 В (ISO 10426-2). Циклический нагрев образцов выполнялся в ячейке старения. Цикл прогрева включал помещение образцов в среду с концентрацией H2S до 1 г/дм3, создание давления СО2 - 3 МПа и прогрев не менее чем 8 ч при температуре 300°С. Затем ячейка охлаждалась до комнатной температуры на воздухе. Предел прочности на сжатие и при изгибе определяли после 8 суток твердения тампонажного камня без нагрева и после пяти циклов нагрева в среде сероводорода и углекислого газа. Исследование прочности проводили с использованием гидравлического малогабаритного пресса ПГМ-100МГ4 Результаты определения исследованных характеристик тампонажных растворов (водоотделение, водоотдача, время загустевания) и тампонажного камня (предел прочности на сжатие и при изгибе, проницаемость) приведены в таблице 2.

Результаты, приведенные в таблице 2, показывают, что разработанный и известный тампонажный материал обладает удовлетворительным временем загустевания при всех условиях проведения эксперимента (t=25°С, р=7 МПа и t=60°С, р=18 МПа), что соответствует ISO 10426-2, более высоким пределом прочности на сжатие (до 20,0 МПа) и при изгибе (не менее 7,0 МПа) после 8 суток твердения при 25±2°С по сравнению с известным материалом, где эти параметры составили 8,5 МПа и 3,3 МПа соответственно. При воздействии углекислого газа и сероводорода в термоциклических условиях (t=25-300°С) значения пределов прочности на сжатие и при изгибе остаются стабильными по сравнению с прочностными характеристиками до циклического нагрева в среде H2S и СО2, и составляют до 21,8 МПа и 7,5 МПа соответственно.

Таким образом, преимуществом разработанного термостойкого тампонажного материала является стабильность прочностных характеристик как при циклически меняющихся температурах в условиях воздействия углекислого газа и сероводорода, так и при отсутствии этих условий, что создает широкие возможности для его применения при эксплуатации скважин в диапазоне температур от 25 до 300°С.

1. Термостойкий тампонажный материал для крепления скважин, которые эксплуатируются в условиях циклически меняющихся температур от 25 до 300°С, отличающийся составом и соотношением компонентов, обеспечивающих высокую прочность в условиях воздействия агрессивных сред - сероводорода (H2S) и углекислого газа (СО2), и включающий портландцемент тампонажный высокой сульфатостойкости, кварцевую муку, золу уноса термоактивированную и воду при следующем соотношении компонентов, % мас.:

Портландцемент тампонажный высокой сульфатостойкости 85-87
Кварцевая мука 8-10
Зола уноса термоактивированная 5
Вода до водосмесевого отношения 0,4

2. Термостойкий тампонажный материал для крепления скважин по п. 1 с дополнительными добавками регуляторов технологических свойств: понизителя фильтрации на основе модифицированных производных полисахаридов различной вязкости до 0,4% мас. сверх 100%, пеногасителя - модифицированного кремнийорганического полимера до 0,2% мас. сверх 100%, замедлителя или ускорителя сроков схватывания до 0,2% мас. сверх 100%.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности, в частности к тампонажным растворам, и может быть использовано при одноступенчатом цементировании протяженных (более 2500 м) обсадных колонн, перекрывающих интервалы проницаемых пластов и пластов с низкими градиентами гидроразрыва при нормальных, умеренных и повышенных температурах.

Изобретение относится к нефтегазодобывающей промышленности. Тампонажный материал для ремонта нефтяных и газовых скважин содержит фенолформальдегидную смолу (35,0-67,5 мас.%), пластификатор (20,0-30,0 мас.%), отвердитель (5,0-15,0 мас.%), модификатор отвердителя (5,0-15,0 мас.%) и ингибитор коррозии (1,0-5,0 мас.%).

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности разработки залежи сверхвязкой нефти с водонефтяными зонами за счет повышения нефтеизвлечения мелкозалегающих залежей с одновременным упрощением способа обработки и снижением эксплуатационных затрат вследствие снижения спуско-подъемных операций, расширения функциональных возможностей способа, сосредоточения депрессии, создаваемой насосом в добывающей скважине, в нефтенасыщенных участках горизонтального ствола, расширения создания локальной гидродинамической связи между скважинами в средней зоне скважины и зоне «носка».

Изобретение относится к способу защиты и очистки водных ресурсов и, в частности, к способу защиты/очистки воды посредством повторного заполнения пласта, поврежденного добычей угля, железосодержащей отработанной водой и может быть применено в области восстановления водоносного слоя и защиты водных ресурсов в пласте.

Изобретение относится к газодобывающей промышленности. Техническим результатом изобретения является снижение обводненности продукции скважины, снижение вредного воздействия на окружающую среду за счет обратимости блокирующего эффекта экранирующей пачки, упрощение реализации способа за счет одностадийности технологии, возможность регулирования реологических параметров экранирующей пачки, снижение трудозатрат и повышение технологической эффективности эксплуатации газовых, газоконденсатных или газогидратных скважин.

Изобретение относится к области буровых работ, связанных с нефтью и газом, и предназначено для устройств дробления скоплений материалов при борьбе с поглощениями бурового раствора и потерями текучей среды.

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород.

Изобретение относится к области строительства и обслуживания скважин, в частности к тампонажным смесям для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород.

Группа изобретений относится к горному делу и может быть использована при сооружении и ремонте скважин различного целевого назначения. Способ гидроизоляции заколонного пространства заключается в том, что спускают в заколонное пространство между стенкой скважины и обсадной трубой шланг и закачивают через шланг тампонажную смесь.

Изобретение относится к нефтегазодобывающей промышленности и может найти применение для повышения эффективности разработки залежей углеводородов со слабосцементированным типом коллектора, в частности для крепления призабойной зоны пласта.

Изобретение относится к нефтяной и газовой промышленности, в частности к саморегулирующимся ингибирующим кальциевым буровым растворам, применяемым при бурении скважин в сложных условиях.
Наверх