Бинарный космический аппарат с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями



Бинарный космический аппарат с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями
Бинарный космический аппарат с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями
Бинарный космический аппарат с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями

Владельцы патента RU 2735448:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" (RU)

Изобретение относится к малоразмерным бинарным космическим аппаратам (БКА), предназначенным для создания реконфигурируемых антенных систем. БКА содержит два цилиндрических корпуса, на торцах которых с помощью телескопических штанг размещены мультивекторные матричные ракетные двигатели (ММРД), осуществляющие развертывание гибкой подложки солнечной батареи (СБ), интегрированной с антенной. Подложка СБ разделена в её середине натяжными стержнями на два полотна, непосредственно сматываемых и наматываемых на корпуса в виде рулонов. Натяжные стержни соединены между собой перемычкой, внутри которой проходят информационные и силовые шины, соединяющие первый и второй контроллеры. Техническим результатом является обеспечение многократного развертывания и свертывания СБ с коллинеарной антенной в компактное положение, а также - увеличение относительной площади СБ. 5 ил.

 

Изобретение относится к малоразмерным бинарным космическим аппаратам (БКА), весом менее 1000 грамм, предназначенным для создания реконфигурируемых антенн или многоэлементных антенных систем на базе нескольких БКА.

Используемое в описании изобретения словосочетание «бинарный космический аппарат» (БКА) - понимается как космический аппарат, состоящий из двух цилиндрообразных корпусов и одной общей гибкой ленточной солнечной батареи, расположенной между ними, разворачиваемой за счет разматывания солнечных батарей, намотанных в рулон вокруг первого и второго корпуса, вращение которых и перемещения одного корпуса относительно другого в противоположные стороны осуществляется с помощью мультивекторных матричных ракетных двигателей (ММРД) с волнообразными цилиндрическими поверхностями. Гибкая ленточная солнечная батарея (СБ) - это гибкая диэлектрическая ленточная подложка, на которую нанесен массив соединенных между собой тонкопленочных солнечных фотоэлементов.

Известен микро-спутник с солнечной батареей, выполненной в виде гибкой подложки с нанесенными тонкопленочными солнечными фотоэлементами, намотанной при выведении вокруг корпуса микро-спутника и развертываемой с помощью пружин после выхода на заданную орбиту. Микро-спутник содержит: корпус спутника, механизм развертывания на базе торсионных пружин, солнечные батареи, выполненные из гибкой подложки с нанесенными тонкопленочными фотоэлементами, двигатели, антенны, солнечный датчик, конусный узел стыковки с другим спутником [1].

Недостатком устройства является отсутствие возможности свертывания в два рулона гибкой подложки с тонкопленочной ленточной СБ, совмещенной с коллинеарной антенной, наматываемой непосредственно вокруг двух цилиндрообразных корпусов БКА при помощи ММРД с волнообразными цилиндрическими поверхностями.

Наиболее близким по технической сущности является бинарный космический аппарат с реконфигурируемой антенной, совмещенной с гибкой ленточной солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями, содержащий два кубических корпуса с закрепленной между ними гибкой подложкой с тонкопленочными солнечными фотоэлементами, которая выполнена в виде диэлектрической ленты с возможностью свертывания в рулон с нанесенными информационно-силовыми шинами и коллинеарной антенной, позиционной штрих-кодовой лентой, два датчика штрих-кода, два мультивекторных матричных ракетных двигателя, две выдвижные телескопические штанги, два линейных шаговых двигателя, две катушки, два дисковых токосъемника, два шаговых двигателя, два лазерных дальномера, две ПЗС-матрицы, два солнечных датчика, два контроллера, два стабилизатора напряжения, два приемопередатчика [2].

Недостатком устройства является отсутствие возможности свертывания в два рулона гибкой подложки с тонкопленочной ленточной СБ, совмещенной с коллинеарной антенной, наматываемой непосредственно вокруг двух цилиндрообразных корпусов БКА при помощи ММРД с волнообразными цилиндрическими поверхностями.

Отличие предлагаемого технического решения от выше изложенных заключается во введении двух цилидрообразных корпусов, что позволило осуществить намотку гибкой солнечной батареи непосредственно вокруг корпусов без применения дополнительных катушек. Введение четырех ММРД с волнообразными цилиндрическими поверхностями генерирующих пакеты тяг с заданными комбинациями их величин и направлений позволило осуществить реверсивное вращение двух корпусов в сочетании с реверсивным перемещением их относительно друг друга. Это позволило с помощью ММРД с волнообразными цилиндрическими поверхностями многократно разворачивать и сворачивать в рулон СБ. Введение четырех дискообразных сканирующих лазерных дальномеров, работающих с обзором горизонта в 360° градусов, размещенных на торцах цилиндрообразных корпусов, позволило постоянно отслеживать расстояние между верхними и нижними торцами корпусов и угол наклона оси симметрии одного корпуса относительно другого, а также постоянно отслеживать расстояние до рядом расположенных БКА при развертывании многоэлементных антенных полей заданной конфигурации, состоящих из нескольких синхронизированных БКА. Введение двух натяжных стержней, соединенных по средине между собой полой перемычкой, позволило убрать с корпуса выступающие части (солнечный датчик) для выполнения равномерной намотки солнечной батареи на цилиндрообразные корпуса и осуществить по принципу «русской матрешки» беспрепятственное выдвижение и вложение ММРД с волнообразными цилиндрическими поверхностями на этапах развертывания и свертывания БКА в космосе. Введение полой перемычки позволило закрепить на ней дискообразный солнечный датчик с равномерным распределением фотоэлементов по внешней поверхности кольца и разместить его геометрически посередине полотна солнечной батареи, состоящей из двух гибких диэлектрических ленточных подложек, увеличив его горизонт обзора.

Техническим результатом является возможность свертывания в два рулона гибкой подложки с тонкопленочной ленточной СБ, совмещенной с коллинеарной антенной, наматываемой непосредственно вокруг двух цилиндрообразных корпусов БКА при помощи ММРД с волнообразными цилиндрическими поверхностями.

Технический результат предложенного изобретения достигается совокупностью существенных признаков, а именно: бинарный космический аппарат с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями, содержащий два корпуса с закрепленной между ними гибкой подложкой с тонкопленочными солнечными фотоэлементами, которая выполнена в виде диэлектрической ленты с возможностью свертывания в рулон, с нанесенными информационно-силовыми шинами и коллинеарной антенной, мультивекторные матричные ракетные двигатели, выдвижные телескопические штанги, линейные шаговые двигатели, лазерные дальномеры, солнечный датчик, два контроллера, два стабилизатора напряжения, два приемопередатчика, четыре мультивекторных матричных ракетных двигателя с волнообразными цилиндрическими поверхностями, четыре выдвижные телескопические штанги, четыре линейных шаговых двигателя, четыре дискообразных сканирующих лазерных дальномера, два натяжных стержня, соединенные между собой по середине пустотелой перемычкой, в середине которой закреплен солнечный датчик, выполненный дискообразным с равномерным распределением фотоэлементов по внешней боковой поверхности диска, электрически соединенный с информационной шиной, первый и второй корпуса выполненные цилиндрообразными, на торцах которых закреплены дискообразные сканирующие лазерные дальномеры, наружные диаметры которых меньше внутренних диаметров оснований волнообразных цилиндрических поверхностей мультивекторных матричных ракетных двигателей с волнообразными цилиндрическими поверхностями, которые соединены с торцами цилиндрообразных корпусов через выдвижные телескопические штанги, проходящие через центральные отверстия, расположенные по центрам дискообразных сканирующих лазерных дальномеров, внутренние стороны которых ограничивают по ширине свернутые в рулон полотна гибких диэлектрических ленточных подложек солнечных батарей, края полотен которых механически крепятся к первому и второму цилиндрообразным корпусам, а электрически соединены с нанесенными информационными и силовыми шинами, а противоположные края первой и второй гибких диэлектрических ленточных подложек механически соединены с первым и вторым натяжными стержнями, соединенными между собой пустотелой перемычкой, внутри которой проходят информационные и силовые шины, соединяющие между собой первый и второй контроллеры.

Сущность изобретения поясняется на Фиг. 1, где представлен бинарный космический аппарат с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями в момент развертывания гибкой ленточной СБ. На Фиг. 2 представлена структурная блок-схема бинарного космического аппарата с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями. На Фиг. 3, Фиг. 4, Фиг. 5 поясняются этапы развертывания свернутой в рулон гибкой солнечной батареи. Фиг. 3, первый этап - выполнение тестирования после выведения на заданную орбиту. Фиг. 4, второй этап - выполнение развертывания гибкой СБ. Фиг. 5, третий этап - выполнение развертывания гибкой СБ с одновременной оптимальной ориентацией ее на Солнце и на заданный источник радиосигнала.

Бинарный космический аппарат с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями, содержит: (Фиг. 1, Фиг. 2) первый цилиндрообразный корпус 1, второй цилиндрообразный корпус 2, первый 3, второй 4, третий 5, четвертый 6 ММРД с волнообразными цилиндрическими поверхностями, первый 7, второй 8, третий 9, четвертый 10 линейные шаговые двигатели, первую 11, вторую 12, третью 13, четвертую 14 выдвижные телескопические штанги; первый 15, второй 16, третий 17, четвертый 18 дискообразные сканирующие лазерные дальномеры, дисковый солнечный датчик 19, первую 20 и вторую 21 гибкую диэлектрические ленточные подложки, тонкопленочные солнечные фотоэлементы 22, силовые шины 23, информационную шину 24, коллинеарную антенну 25, первый 26 и второй 27 контроллеры, первый 28 и второй 29 стабилизаторы напряжения, первый 30 и второй 31 приемопередатчики, первый натяжной стержень 32, второй натяжной стержень 33, полую перемычку 34. На фиг. 2, в границах замкнутых пунктирных линий, расположены элементы, конструктивно размещенные в первом 1 и втором 2 цилиндрообразных корпусах. λ1, λ2, λ3, λ4 - выделенные длинны волн электромагнитного излучения оптического диапазона, излучаемые первым 15, вторым 16, третьим 17, четвертым 18 дискообразными сканируемыми лазерными дальномерами.

Для успешного развертывания БКА, собранного по принципу «русской матрешки», должны быть выполнены следующие условия: наружный диаметр дисков дискообразных сканирующих лазерных дальномеров должен быть меньше минимального внутреннего диаметра волнообразного контура мультивекторных матричных ракетных двигателей (ММРД) с волнообразными цилиндрическими поверхностями; толщина намотки гибкой СБ, не должна выходить за наружный диаметр дисков сканирующих лазерных дальномеров; ширина гибкой диэлектрической ленточной подложки СБ не должна превышать расстояния между дисками сканирующих лазерных дальномеров, расположенных на торцах первого и второго цилиндрообразных корпусов; ширина пустотелой перемычки должна быть достаточной для того, чтобы в процессах свертывания и развертывания ММРД не смогли задеть друг друга цилиндрическими поверхностями при выдвижении их телескопическими штангами.

Для осуществления изобретения могут быть использованы, например, известные технологии изготовления компонентов. В качестве мультивекторного матричного ракетного двигателя (ММРД) с волнообразной цилиндрической поверхностью может быть использована мультивекторная матричная ракетная двигательная система с цифровым управлением величины и направления тяги, которая состоит из плоской дискообразной с волнообразным внешним контуром монолитной термостойкой диэлектрической подложки, с размещенными на ней квадратной матричной реверсивной структурой двигательных ячеек, соединенной с повторяющим ее контур цилиндрообразной полой с волнообразным профилем монолитной термостойкой диэлектрической подложкой с радиально-веерной ориентацией всех продольных осей конусообразных микропор на центры чередующихся сопряженных вогнутых и выпуклых полуокружностей, образующих в совокупности замкнутую волнообразную внешнею поверхность. Все конусообразные микропоры заполнены твердым топливом и ранжированы по объему в пропорциях последовательных степенях числа два (1-2-4-8-16-32), обеспечивающих генерацию множества разнонаправленных векторов тяги с прецизионным цифровым управлением в двоичном коде величиной тяги каждой ячейки [3, 4].

При изготовлении гибкой СБ могут быть использованы известные технологии изготовления гибких солнечных тонкопленочных батарей, выполненных на базе гибкой подложки с нанесенными тонкопленочными фотогальваническими элементами, изготовленными, по меньшей мере, из аморфного кремния (a-Si), теллурида кадмия (CdTe), арсенида галлия (GaAs) [1].

Устройство работает следующим образом: после вывода на орбиту БКА включаются первый 7, второй 8, третий 9, четвертый 10 линейные шаговые двигатели, осуществляющие выдвижение первой 11, второй 12, третей 13, четвертой 14 телескопических штанг, отводящие первый 3, второй 4, третий 5, четвертый 6 ММРД с волнообразной цилиндрической поверхностью от торцов первого 1 и второго 2 цилиндрообразных корпусов. Одновременно включаются первый 15, второй 16, третий 17, четвертый 18 сканирующие лазерные дальномеры, работающие на выделенных длинах волн λ1, λ2, λ3, λ4 для исключения влияния помех от активных или пассивных источников. После проверки работоспособности сканирующих лазерных дальномеров 15, 16, 17, 18 включаются ММРД с волнообразными цилиндрическими поверхностями 3, 4, 5, 6, которые создают вращение первого 1 и второго 2 цилиндрообразных корпусов, разматывая свернутые в рулон первую 20 и вторую 21 гибкие диэлектрические ленточные подложки СБ, с одновременным удалением одного цилиндрообразного корпуса от другого, растягивая полотно СБ в противоположные стороны для исключения провисания (Фиг. 4). После развертывания на требуемую длину первой 20 и второй 21 гибких диэлектрических ленточных подложек с тонкопленочными солнечными фотоэлементами 22 БКА переходит в режим ориентации и слежения за Солнцем. Поворот плоскостей первой 20 и второй 21 гибких диэлектрических ленточных подложек в направлении Солнца и одновременное оптимальное натяжение их осуществляется с помощью первого 3, второго 4 и третьего 5. четвертого 6 ММРД с волнообразными цилиндрическими поверхностями, осуществляющие сближение или удаление, или изменение угла наклона, соответственно, первого 1 или второго 2 цилиндрообразных корпусов. Согласно коду координат Солнца, полученных от дискового солнечного датчика 19, и информации, поступающей с первого 15, третьего 17 и второго 16, четвертого 18 сканирующих лазерных дальномеров о расстоянии и углах осей между первым 1 и вторым 2 цилиндрообразными корпусами, осуществляются синхронные угловые повороты первого 1 и второго 2 цилиндрообразных корпусов, без изменения расстояния между ними (Фиг. 5). На первой 20 и второй 21 гибких диэлектрических ленточных подложках, кроме тонкопленочных солнечных фотоэлементов 22 и соединяющих их силовых шин 23, также нанесены коллинеарная антенна 25 и проводной двунаправленный канал связи в виде информационной шины 24 для обмена информацией между первым 26 и вторым 27 контроллерами и получения информации от дискового солнечного датчика 19, выполненного с равномерным распределением фотоэлементов по внешней боковой поверхности диска. Для улучшения обзора горизонта дисковый солнечный датчик 19 размещен по середине полой перемычки 34, внутри которой проходят информационная и силовые шины, соединяющие первый 26 и второй 27 контроллеры. Полая перемычка 34 механически соединяет между собой первый 32 и второй 33 натяжные стержни, совместно образующие жесткую Н-образную раму для натяжения между первым 1 и вторым 2 цилиндрообразными корпусами первой 20 и второй 21 гибких диэлектрических ленточных подложек СБ. Электрический ток, выработанный тонкопленочными солнечными фотоэлементами 22, поступает на входы первого 28 и второго 29 стабилизаторов напряжения, которые выдают стабилизированные напряжения для питания первого 30 и второго 31 приемопередатчиков, для зарядки аккумуляторов первого 26 и второго 27 контроллеров и для обеспечения электропитанием всех датчиков и двигателей.

На Фиг. 3, Фиг. 4, Фиг. 5 поясняются этапы развертывания гибкой солнечной батареи. Фиг. 3, первый этап - выполнение тестирования после выведения на заданную орбиту. На этом этапе тестируется электроника всех ММРД с волнообразными цилиндрическими поверхностями, в полости которых вложены вершины первого и второго цилиндрических корпусов по принципу «русской матрешки», с целью уменьшения габаритов БКА. Также, в этот режим БКА может переходить при завершении основной работы и для уменьшения размеров отражающей поверхности БКА, когда не требуется полного развертывания СБ и ее ориентации на солнце, а площади двух открытых для освещения участков солнечной батареи достаточно для выработки энергии, обеспечивающей работу БКА в дежурном режиме. Фиг. 4, второй этап - выполнение развертывания гибкой СБ. На этом этапе первый 3, второй 4, третий 5, четвертый 6 ММРД с волнообразными цилиндрическими поверхностями с помощью первой 11 второй 12, третьей 13, четвертой 14 выдвижных телескопических штанг отводятся от первого 1 и второго 2 цилиндрообразных корпусов. После этого включаются первый 3 второй 4, третий 5, четвертый 6 ММРД с волнообразными цилиндрическими поверхностями, которые разматывают рулоны и растягивают размотанное полотно первой 20 и второй 21 гибких диэлектрических ленточных подложек в противоположные стороны за счет создания мультивекторных тяг и ориентируясь по показаниям сканирующих лазерных дальномеров с длинами волн λ1, λ2, λ3, λ4. Фиг. 5, третий этап - выполнение развертывания гибкой солнечной батареи с одновременной ориентацией ее на Солнце. На этом этапе, первый 3 второй 4, третий 5, четвертый 6 ММРД с волнообразными цилиндрическими поверхностями осуществляют синхронные угловые развороты первого 1 и второго 2 цилиндрообразных корпусов, согласно заданным координатам ориентации поверхностей первой 20 и второй 21 гибких диэлектрических ленточных подложек с тонкопленочными солнечными фотоэлементами 22. Оптимальная ориентация направления СБ на Солнце происходит в сочетании с оптимальным поворотом ее на заданный угол вокруг оси, проходящий через геометрический центр полотна подложки СБ, при ориентации антенны на источник радиосигнала. Двунаправленными стрелками показаны направления развертывания и свертывания гибкой солнечной батареи.

Предложенная конструкция бинарного космического аппарата с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями, позволила с помощью телескопических штанг надевать цилиндрообразные двигатели большего диаметра на торцы меньшего диаметра цилидрообразных корпусов по принципу «русской матрешки» и осуществлять скоростное свертывание и развертывание гибкой диэлектрической ленточной подложки непосредственно наматывая или сматывая СБ на один или одновременно на два цилиндрообразных корпуса, что позволило уменьшить габариты выводимого в космос БКА и получить максимальное отношение площади развертываемой солнечной батареи по отношению к сверхмалой площади поверхности корпуса БКА, что ранее невозможно было осуществить с помощью известных конструкций малоразмерных космических аппаратов.

Источники информации

1 Patent US 9758260 В2, Sep.12, 2017, B64G 1/22, B64G 1/10, Low VOLUME MICRO SATELLITE WITH ELEXIBLE WINDED PANELS EXPANDABLE AFTER LAUNCH.

2. Патент на полезную модель RU 190495 U1, 02.07.2019, B64G 1/22, B64G 1/10, БИНАРНЫЙ КОСМИЧЕСКИЙ АППАРАТ С РЕКОНФИГУРИРУЕМОЙ АНТЕННОЙ, СОВМЕЩЕННОЙ С ГИБКОЙ ЛЕНТОЧНОЙ СОЛНЕЧНОЙ БАТАРЕЕЙ, РАЗВЕРТЫВАЕМОЙ МУЛЬТИВЕКТОРНЫМИ МАТРИЧНЫМИ РАКЕТНЫМИ ДВИГАТЕЛЯМИ / Линьков В.А., Гусев С.И., Колесников С.В., Линьков Ю.В., Линьков П.В., Таганов А.И.

3. Патент RU 2707474 С1, 26.11.2019, F02K 9/95, B64G 1/40, МУЛЬТИВЕКТОРНАЯ МАТРИЧНАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ СИСТЕМА С ЦИФРОВЫМ УПРАВЛЕНИЕМ ВЕЛИЧИНОЙ И НАПРАВЛЕНИЕМ ТЯГИ ДВИГАТЕЛЬНЫХ ячеек для малоразмерных космических аппаратов / Линьков В.А., Гусев С.И., Колесников С.В., Линьков Ю.В., Линьков П.В., Таганов А.И.

4. Патент на полезную модель RU 189442 U1, 22.05.2019, F02K 9/94, F02K 9/95, B64G 1/40, В81В 7/04, Мультивекторная матричная ракетная двигательная система с цифровым управлением величиной и направлением тяги двигательных ячеек для малоразмерных космических аппаратов / Линьков В.А., Гусев С.И., Колесников С.В., Линьков Ю.В., Линьков П.В., Таганов А.И.

Бинарный космический аппарат с реконфигурируемой антенной, совмещенной со свертываемой в рулон солнечной батареей, развертываемой мультивекторными матричными ракетными двигателями, содержащий два корпуса с закрепленной между ними гибкой подложкой с тонкопленочными солнечными фотоэлементами, которая выполнена в виде диэлектрической ленты с возможностью свертывания в рулон, с нанесенными информационно-силовыми шинами и коллинеарной антенной, мультивекторные матричные ракетные двигатели, выдвижные телескопические штанги, линейные шаговые двигатели, лазерные дальномеры, солнечный датчик, два контроллера, два стабилизатора напряжения, два приемопередатчика, отличающийся тем, что содержит четыре мультивекторных матричных ракетных двигателя с волнообразными цилиндрическими поверхностями, четыре выдвижные телескопические штанги, четыре линейных шаговых двигателя, четыре дискообразных сканирующих лазерных дальномера, два натяжных стержня, соединенных между собой по середине пустотелой перемычкой, в середине которой закреплен солнечный датчик, выполненный дискообразным с равномерным распределением фотоэлементов по внешней боковой поверхности диска, электрически соединенный с информационной шиной, при этом первый и второй корпуса выполнены цилиндрообразными, и на их торцах закреплены дискообразные сканирующие лазерные дальномеры, наружные диаметры которых меньше внутренних диаметров оснований волнообразных цилиндрических поверхностей указанных мультивекторных матричных ракетных двигателей, которые соединены с торцами цилиндрообразных корпусов через выдвижные телескопические штанги, проходящие через отверстия, расположенные по центрам дискообразных сканирующих лазерных дальномеров, внутренние стороны которых ограничивают по ширине свернутые в рулон два полотна гибкой диэлектрической ленточной подложки солнечных батарей, причём одни края полотен механически крепятся к первому и второму цилиндрообразным корпусам и электрически соединены с нанесенными на них информационными и силовыми шинами, а противоположные края полотен механически соединены с первым и вторым натяжными стержнями, соединенными между собой пустотелой перемычкой, внутри которой проходят информационные и силовые шины, соединяющие между собой первый и второй контроллеры.



 

Похожие патенты:

Изобретение относится к конструкции и оборудованию главным образом малоразмерных спутников, предназначенных для создания антенных систем. Бинарный космический аппарат (БКА) содержит два кубических корпуса с поворотными телескопическими штангами, на которых размещены мультивекторные матричные ракетные двигатели (ММРД) для развёртывания гибкой солнечной батареи, интегрированной с коллинеарной антенной, информационными и силовыми шинами, позиционной штрихкодовой лентой.

Изобретения относятся к области химического материаловедения и могут быть использованы при изготовлении датчиков химического состава, электрохимических источников тока, носителей катализаторов, химических реагентов, меток, хроматографических фаз или дозы лекарства в микрокапсулах.

Изобретение относится к оптической технике. Оптический модулятор, каждый пиксель которого содержит перекрывающие площадь пикселя неподвижный плоский поляризатор и параллельный ему подвижный плоский поляризатор.

Изобретение относится к двигательным ракетным системам для малоразмерных космических аппаратов и предназначено для использования в качестве маневрового двигателя при выполнении линейных и угловых перемещений.

Изобретение относится к устройствам полимерной электроники, в частности к матричным устройствам для преобразования давления в электрический сигнал. Матричные датчики давления используются для определения формы предметов, воздействующих на датчик, и могут использоваться в робототехнике, медицине, при автоматизации производственных процессов.

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин.

Группа изобретений относится к области медицины и может быть использована для мультиплексного анализа. Анализирующее устройство содержит реакционное пространство, два набора индивидуально закодированных микроносителей (2), причем каждый микроноситель является функционализирующим, а каждый микроноситель одного из по меньшей мере двух наборов имеет одинаковую функционализацию, в котором реакционное пространство является микроканалом.

Микроэлектромеханический ракетный двигатель предназначен для использования в составе космических разгонных блоков, наноспутников. Микроэлетромеханический ракетный двигатель выполнен в виде структуры из полупроводниковых кристаллов кремния, расположенных один над другим, в одном из которых выполнена камера сгорания с топливным элементом, и содержит блок поджига топлива с металлическими проводниками.

Изобретение относится к области измерительной техники, в частности к, микроэлектронным датчикам - химическим и биосенсорам, предназначенным для одновременных акустических на поверхностно-акустических волнах (ПАВ) и оптических исследований физико-химических и (или) медико-биологических свойств тонких порядка 0.1 мкм (100 нм) и менее нанопленок.

Изобретение относится к конструкции и оборудованию главным образом малоразмерных спутников, предназначенных для создания антенных систем. Бинарный космический аппарат (БКА) содержит два кубических корпуса с поворотными телескопическими штангами, на которых размещены мультивекторные матричные ракетные двигатели (ММРД) для развёртывания гибкой солнечной батареи, интегрированной с коллинеарной антенной, информационными и силовыми шинами, позиционной штрихкодовой лентой.
Наверх