Датчик аэрометрических давлений

Изобретение относится к контрольно-измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода. Датчик аэрометрических давлений содержит корпус, который имеет два отверстия, сообщающиеся с измеряемой средой, и внутри которого размещен анероидный чувствительный элемент, образованный верхней и нижней мембранами, прикрепленными герметично по периметру к корпусу и образующими зазор путем разнесения по высоте, при этом два отверстия корпуса расположены соответственно выше и ниже зазора, а в зазоре размещены фотоприемные линейки, причем в зазоре установлено устройство для формирования оптических лучей, жестко прикрепленное к боковой стенке корпуса. При этом к той же боковой стенке корпуса прикреплены фотоприемные линейки, а в геометрических центрах верхней и нижней мембран установлены криволинейные отражатели оптических излучений. Технический результат - повышение чувствительности и точности измерения давления и по высоте, и по скорости полета воздушного судна. 2 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода.

Известен барометрический высотомер (авторское свидетельство СССР №1426187, заяв. 1987, МПК G01C 5/00; G01C 5/06, 10.06.2005 г.), содержащий последовательно соединенные преобразователь давления в частоту импульсов тока, формирователь интервала счета, двоичный многоразрядный счетчик с входами предварительной установки и выходной регистр, управляющий вход которого соединен с выходом формирователя интервала счета, генератор опорной частоты и схему. И, первый и второй входы которой соединены соответственно с выходами генератора опорной частоты и формирователя интервала счета.

Существенными недостатками частотных преобразователей давления являются: высокая зависимость от стабильности частоты питающего напряжения и чувствительность к механическим вибрациям; появление температурных погрешностей датчика и относительно большие энергетические затраты, вызванные наличием специального электромагнитного возбудителя колебаний; постоянный уход метрологических характеристик упругого элемента, определяемый большим числом колебаний.

Известно также устройство для измерения барометрических вертикальной скорости и высоты полета (Патент РФ №1292447 Кл. G01P 3/489, 10.06.2005 г.), содержащее барометрический высотомер, подключенный выходом к первому входу первого вычитателя непосредственно и ко второму входу первого вычитателя через последовательно соединенные первый, второй и третий элементы задержки, второй вычитатель, подсоединенный первым входом к выходу первого элемента задержки, вторым входом к выходу второго элемента задержки и выходом к первому входу первого сумматора, соединенного вторым входом с выходом первого вычитателя, и выходные шины.

Данное устройство обладает, по сравнению с предыдущим, более высокой точностью измерений за счет уменьшения динамической и флуктуационной погрешностей, однако ему также присущи все вышеперечисленные недостатки частотных преобразователей давления.

Известен датчик давлений, использующий оптический метод преобразования информации (Патент РФ 2653596 МПК G01L 7/00 (2006.01), 2018), содержащий корпус, который имеет два отверстия, сообщающиеся с измеряемой средой, и внутри которого размещен анероидный чувствительный элемент, образованный двумя мембранами, отличающийся тем, что в устройство дополнительно введены источник излучения, закрепленный на стойке, и две шторки с прорезями, закрепленные на той же стойке, а также две фотоприемные линейки, причем мембраны чувствительного элемента разделены на верхнюю и нижнюю и герметично по периметру прикреплены к корпусу, образуя безвоздушный зазор, при этом отверстия корпуса расположены выше и ниже зазора, стойка размещена внутри зазора и прикреплена к корпусу, а фотоприемные линейки, также размещенные в зазоре, прикреплены соответственно к верхней и нижней мембранам и обращены к соответствующим прорезям шторок.

Данное устройство лишено вышеперечисленных недостатков аналогов: высокая чувствительность фотоприемного устройства требует минимальной деформации упругого элемента, что позволит избавиться от целого ряда погрешностей: остаточной деформации, нелинейности, упругих несовершенств материала, температурных колебаний, от воздействия линейных ускорений, от воздействия вибраций, от изменения свойств материала с течением времени и т.п. Бесконтактный съем информации и работа информационной системы в условиях вакуума значительно повысят эффективность процессов измерения. Отметим также значительное уменьшение энергопотребления.

К недостаткам данного устройства можно отнести ряд факторов, влияющих на точность измерения. Информация о текущей координате оптического пятна вдоль оси фотоприемной линейки формируется дискретно, с периодом, равным периоду опроса всех пикселей фотоприемной линейки. Для повышения точности измерений необходимо уменьшать период опроса, однако это ограничивается техническими возможностями используемой фотоприемной линейки. Кроме того, точность измерений в значительной степени зависит от геометрических размеров пикселей фотоприемного устройства, так как перемещение геометрического центра мембраны эквивалентно перемещению оптического пятна на поверхности фотоприемного устройства. А также, установленные на верхней и нижней мембранах фотоприемные линейки с подходящими к ним проводами приводят к увеличению массы и габаритных размеров жесткого центра мембран. Это приводит к снижению их динамической устойчивости.

Известен датчик аэрометрических давлений (Патент РФ 2684683 МПК G01L 7/08 (2006.01), 2019), содержащий корпус с двумя отверстиями, две основные мембраны, герметично по периметру прикрепленные к корпусу и образующие зазор путем разнесения по высоте, причем отверстия, сообщающиеся с измеряемой средой, размещены выше и ниже зазора, закрепленные на стойке источник излучения и, кроме того, верхнюю и нижнюю шторки с прорезями, а также две фотоприемные линейки, отличающийся тем, что в геометрических центрах верхней и нижней основных мембран содержатся отверстия, которые с внешних сторон мембран по отношению к зазору перекрыты дополнительными верхней и нижней мембранами, герметично по периметру прикрепленными к внешним сторонам основных мембран, при этом фотоприемные линейки прикреплены соответственно к верхней и нижней дополнительным мембранам и обращены к прорезям верхней и нижней шторок.

Предлагаемое устройство, обладая всеми достоинствами предыдущего устройства, позволяет значительно повысить точность измерения нелинейно изменяющегося давления (статического и полного), а также чувствительность датчиков давления на первоначальном этапе измерения.

Данному устройству присущи все недостатки датчика делений, использующего оптический метод преобразования информации, кроме того, использование дополнительных мембран значительно усложняет конструкцию упругого чувствительного элемента.

Технической задачей предлагаемого изобретения является создание датчика аэрометрических давлений.

Технический результат - повышение чувствительности и точности измерения давления и по высоте, и по скорости полета воздушного судна, а так же повышение функциональных возможностей упругого чувствительного элемента.

Указанный технический результат достигается тем, что устройство содержит корпус, который имеет два отверстия, сообщающиеся с измеряемой средой и внутри которого размещен анероидный чувствительный элемент, образованный верхней и нижней мембранами прикрепленными герметично по периметру к корпусу и образующими зазор путем разнесения по высоте, при этом два отверстия корпуса расположены соответственно выше и ниже зазора, а в зазоре размещены фотоприемные линейки, отличающийся тем, что в зазоре установлено устройство для формирования оптических лучей, жестко прикрепленное к боковой стенке корпуса, при этом к той же боковой стенке корпуса прикреплены фотоприемные линейки, а в геометрических центрах верхней и нижней мембран установлены криволинейные отражатели оптических излучений.

Изобретение поясняется фиг. 1, на которой представлена конструкция датчика аэрометрических давлений, и фиг. 2, поясняющей принцип работы датчика аэрометрических давлений.

Устройство содержит корпус 1 с двумя отверстиями, соответственно для измерения статического (Рст) и полного (Рполн) давлений, сообщающиеся с измеряемой средой и внутри которого размещен анероидный чувствительный элемент, образованный верхней 2 и нижней 3 мембранами, прикрепленными герметично по периметру к корпусу 1 и образующими зазор путем разнесения по высоте, при этом два отверстия корпуса 1 расположены соответственно выше и ниже зазора, а в зазоре размещены фотоприемные линейки 4 и 5, а также устройство 6 для формирования оптических лучей, жестко прикрепленное к боковой стенке корпуса 1, при этом к той же боковой стенке корпуса 1 прикреплены фотоприемные линейки 4 и 5, а в геометрических центрах верхней 2 и нижней 3 мембран установлены криволинейные отражатели оптических излучений 7 и 8.

Работа устройства при измерении статического давления (Рст) осуществляется следующим образом. В исходном состоянии мембрана 2 анероидного чувствительного элемента занимает определенное положение. Оптический луч U1 сформированный устройством 6 и отраженный от отражателя 7 на угол AB1C1 попадает на фотоприемную линейку 4. При этом формируется оптическое пятно на фоточувствительной поверхности фотоприемной линейки 4 размером в несколько элементов (пикселей).

В фотоприемной линейке отдельные фоточувствительные элементы (пиксели) расположены вдоль одной координаты. Принцип работы данных устройств заключается в формировании внутри каждого пикселя электрического сигнала, пропорционального поглощенной им оптической энергии. Достигается это благодаря фоточувствительному р-n переходу (как и в обычном фотодиоде), через который происходит разряд конденсатора фотоприемного элемента. Чем больше будет оптическая мощность, попадающая на пиксель, тем больше будет ток фотодиода и, следовательно, тем быстрее будет разряжаться конденсатор. В конце цикла измерения происходит считывание остаточного заряда конденсаторов пикселей.

Изменение статического давления (Рст) способствует перемещению геометрического центра мембраны 2 с отражателем 7 оптического излучения на величину w тем самым изменяя направление луча U1 на угол АВ2С2. Изменение направления луча U1 с угла AB1C1 на угол АВ2С2 способствует смещению оптического пятна по фоточувствительной поверхности фотоприемной линейки 4 на величину S. Величина смещения оптического пятна S, при прочих равных условиях, определяется разностью между углами АВ1С1 и АВ2С2 которая в свою очередь зависит от кривизны отражателя 7. Чем больше разность между углами АВ1С1 и АВ2С2 тем больше смещение оптического пятна S по отношению к прогибу геометрического центра мембраны w.

В то же время, при последовательном опросе пикселей на выходе фотоприемных многоэлементных устройств будет формироваться электрический сигнал, у которого изменение амплитуды во времени отображает распределение оптической мощности в пространстве фотоприемного устройства от воздействия на него оптического пятна. Иными словами, на выходе фотоприемных устройств будут формироваться электрические сигналы, пропорциональные статическому давлениям.

Вычисление полного давления (Рполн) происходит аналогично описанному выше процессу вычисления статического давления. Изменение полного давления способствует перемещению геометрического центра мембраны 3 с отражателем 8, тем самым изменяя направление луча U2. Луч U2 изменяя свое направление смещает оптическое пятно по фоточувствительной поверхности фотоприемной линейки 5.

Предлагаемое устройство, обладая всеми достоинствами прототипа, работоспособно при существенно меньших значениях деформации упругого элемента вследствие применения криволинейного отражателя и высокочувствительного фотоприемного устройства, что позволит избавиться от целого ряда погрешностей: остаточной деформации, нелинейности, упругих несовершенств материала, температурных колебаний, от воздействия линейных ускорений, от воздействия вибраций, от изменения свойств материала с течением времени и т.п. Отсутствие в геометрических центрах мембран дополнительных элементов (шторок, излучателей и фотоприемных линеек), улучшает динамические свойства датчика.

Расчет аэрометрических параметров: относительной барометрической высоты, приборной скорости, истинной воздушной скорости, вертикальной скорости, отклонения от заданной высоты и числа Маха - в вычислитель непрерывно должна поступать следующая информация: Рст - статическое давление, Рполн - полное давление, Ро - давление, относительно которого измеряется высота (выставляется вручную), Тт - температура заторможенного набегающего воздушного потока. Очевидно, что предлагаемый датчик давления совместно с датчиком температуры, позволяет определить все перечисленные аэрометрические параметры.

Датчик аэрометрических давлений, содержащий корпус, который имеет два отверстия, сообщающиеся с измеряемой средой, и внутри которого размещен анероидный чувствительный элемент, образованный верхней и нижней мембранами, прикрепленными герметично по периметру к корпусу и образующими зазор путем разнесения по высоте, при этом два отверстия корпуса расположены соответственно выше и ниже зазора, а в зазоре размещены фотоприемные линейки, отличающийся тем, что в зазоре установлено устройство для формирования оптических лучей, жестко прикрепленное к боковой стенке корпуса, при этом к той же боковой стенке корпуса прикреплены фотоприемные линейки, а в геометрических центрах верхней и нижней мембран установлены криволинейные отражатели оптических излучений.



 

Похожие патенты:

Изобретение относится к области энергомашиностроения и может быть использовано для измерения давления при испытаниях газотурбинных двигателей. Сущность: модуль (6) преобразователя давления содержит платформу (11) с закрепленным на ней преобразователем (12) давления, коллектор (13) с расположенными на нем по меньшей мере двумя распределителями (20) с электроуправлением и элемент (14) крепления модуля (6) преобразователя давления.

Изобретение относится к геофизической технике и может быть использовано для проведения гидротермодинамических исследований пластов и, преимущественно, паронагнетательных скважин, в частности, для уточнения геолого-гидродинамической модели продуктивного пласта и залежи, контроля продуктивности скважин.

Изобретение относится к промышленной метрологии и может быть использовано для высокоточного измерения статического и динамического давления. Способ измерения давления, при котором в объемном резонаторе в виде отрезка волновода с одной из торцевых стенок в виде металлической мембраны, воспринимающей измеряемое давление, в первом цикле измерений возбуждают электромагнитные колебания одного из его типов Нnmp (n= 0, 1, 2,…; m= 0, 1, 2,…, p=1 ,2,…) или Еnmp (n= 0, 1, 2,…; m= 1, 2,…, p= 1, 2,…) с ненулевым индексом p и измеряют резонансную частоту ƒ1 электромагнитных колебаний.

Объектом изобретения является способ оценки давления (Pass) в вакуумном резервуаре (28) вакуумного сервотормоза (26) автотранспортного средства (10), при этом транспортное средство (10) содержит: тормозное устройство (16); сервотормоз (26); датчик (23) давления.

Изобретение относится к области волоконной оптики и может быть использовано при разработке датчиков физических величин на основе кольцевого волоконно-оптического интерференционного чувствительного элемента.

Изобретение относится к области сенсорной электроники и может быть использовано для измерения параметров технологических сред, в медицине. Заявленный амплитудный волоконно-оптический сенсор давления содержит кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, передающее излучение от внешнего источника и закрепленное на мембранном упругом элементе с возможностью перемещения только вместе с его жестким центром пропорционально измеряемому давлению, и один фотоприемник.

Изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано в датчиках давления. Устройство для измерения давления состоит из штока, первого, второго и третьего пьезоэлементов.

Изобретение относится к испытаниям металлических конструкций и может быть использовано в кабельной технике для оценки работоспособности муфт кабельных погружных электродвигателей.

Изобретение относится к области измерительной техники, в частности к области волоконно-оптических средств измерений давления, и применимо в нефтяной и газовой промышленности, медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления.

Предлагаемое изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано при измерении динамического давления совместно с пьезоэлектрическими датчиками динамического давления.

Изобретение относится к контрольно-измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода.
Наверх