Фотодиодный анализатор капиллярного кровотока

Изобретение относится к медицинской технике, а, именно к оптоэлектронным диагностическим аппаратам. Фотодиодный анализатор капиллярного кровотока содержит корпус, внутри которого расположены оптоэлектронный датчик фотоплетизмографии, фильтр, модуль Bluethooth для связи с удаленным внешним устройством и аккумулятор. Корпус выполнен П-образной формы, на внутренней поверхности концов которого расположены элементы для фиксации относительно челюсти пациента, при этом одна из стенок корпуса выполнена с отверстием для прохождения световых сигналов, подаваемых на слизистую поверхность полости рта, расположенного внутри корпуса модуля оптоэлектронного датчика, представленного тремя излучателями: красного, зеленого и инфракрасного излучения, и фоторезистора для приема отраженного излучения. При этом фильтр при нарушении контакта между поверхностью слизистой оболочки полости рта и модулем оптоэлектронного датчика имеет возможность блокировать анализ временных данных, сохраняя при этом предыдущие данные, поступающие на модуль агрегатирования - микроконтроллер, передающий данные для анализа программным обеспечением удаленного внешнего устройства различными статистическими и геометрическими методами оценки вариабельности сердечного ритма. Изобретение обеспечивает возможность определения частоты сердечных сокращений, насыщенности крови, уровня стресса, состояния вегетативной нервной системы, ранней диагностика диабетической нейропатии и оценки состояния регионального кровообращения полости рта на этапах лечения заболеваний пародонта, а также дистанционной беспроводной диагностики функционального состояния сердечно-сосудистой системы человека в режиме реального времени. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к медицинской технике, а именно к оптоэлектронным диагностическим аппаратам, позволяющим оценить общие функциональные данные локального кровотока полости рта и произвести региональную оценку кровеносной системы, выявить заболевания сердечно-сосудистой системы (инфаркт миокарда, гипертоническая болезнь, стенокардия) и нарушения метаболических и энергетических процессов в организме.

В последние десятилетия производимыми исследованиями была выявлена взаимосвязь между вегетативной нервной системой (ВНС) и заболеваниями сердечно-сосудистой системы. Активность симпатических и парасиматических отделов нервной системы являются результатом реакции многоконтурной и многоуровневой системы кровообращения, определяющие адаптационные свойства организма. Для оценки вегетативной активности наиболее многообещающим показателем является вариабельность сердечного ритма (BGP). Для определения; частоты сердечных сокращений (ЧСС) в пульсо-метрии необходимо иметь электрокардиосигналы (ЭКС), получаемые с помощью различных устройств, содержащих датчик для получения фотопле-тизмографических сигналов.

Известно устройство для обработки фотоплетизмографических сигналов, содержащее датчик, процессор и блок соединения с процессором (см. описание изобретения к патенту Российской Федерации №2 567 266 «Способ и устройство для обработки фотоплетизмографических сигналов», МПК А61В 5/024 (2006.01), опубл. 27.01.2014).

- Известное устройство не может быть использовано для исследований в полости рта и не имеет алгоритмов оценки ВСР, что является его недостатком. Кроме того отсутствует беспроводная передача данных посредством сети Интернет врачу, что сужает его функциональные возможности.

Наиболее близким, принятым в качестве прототипа, является устройство содержащее датчик ФПГ, систему фильтрации сигнала, модуль Bluethooth и аккумулятор, (см. описание изобретения к патенту Российской Федерации №2 657 966 «Устройство и способ для дистанционной диагностики функционального состояния сердечно-сосудистой системы человека на основе двигательной активности и фотоплетизмографии», МПК А61В 5/024 (2006.01), А61В 5/11 (2006.01), опубл. 26.06.2018).

Известное устройство выполнено в виде браслета и предназначено для считывания данных состояния сердечно-сосудистой системы датчиком фотоплетизмографии (ФПГ) с поверхности кожного покрова.

Программное обеспечение устройства не позволяет производить расчет вариабельности сердечного ритма (ВСР), в результате чего не осуществляется диагностика адаптационных возможностей вегетативной нервной системой (ВНС), что является его недостатком.

Технической задачей и результатом предлагаемого изобретения является расширение функциональных возможностей путем обеспечения возможности определения частоты сердечных сокращений, насыщенности крови, уровня стресса, состояния вегетативной нервной системы, ранней диагностика диабетической нейропатии и оценки состояния регионального кровообращения полости рта на этапах лечения заболеваний пародонта, а также дистанционной беспроводной диагностики функционального состояния сердечно-сосудистой системы человека в режиме реального времени для профилактики сердечно-сосудистых заболеваний, таких как инсульт и инфаркт на ранних стадиях развития.

Технический результат достигается тем, что фотодиодный анализатор капиллярного кровотока содержит корпус, внутри которого расположены оптоэлектронный датчик фотоплетизмографии, фильтр, модуль Bluethooth для связи с удаленным внешним устройством и аккумулятор, при этом корпус выполнен П-образной формы, на внутренней поверхности концов которого расположены элементы для фиксации относительно челюсти пациента, одна из стенок корпуса выполнена с отверстием для прохождения световых сигналов, подаваемых на слизистую поверхность полости рта расположенного внутри корпуса модуля оптоэлектронного датчика, представленного тремя излучателями: красного, зеленого и инфракрасного излучения, и фоторезистора для приема отраженного излучения, при этом фильтр, при нарушении контакта между поверхностью слизистой оболочки полости рта и модулем оптоэлектронного датчика, имеет возможность блокировать анализ временных данных, сохраняя при этом предыдущие данные, поступающие на модуль агрегатирования-микроконтроллер, передающий данные для анализа программным обеспечением удаленного внешнего устройства различными статистическими и геометрическими методами оценки вариабельности сердечного ритма. Корпус выполнен полый из биоинертной пластмассы. Элементы для фиксации относительно челюсти Пациента выполнены в виде зацепов из силиконового материала или универсально адаптированных зажимов. Диапазон световых сигналов излучателей красного 670±5 нм зеленого 530±10 нм и инфракрасного 940±5 нм.

Устройство позволяет, получать данные о ЧСС, насыщенности крови 02 и цветовые показатели крови, необходимые для определения остальных необходимых показателей в зависимости от заболеваний: RRNN, SDNN, SEM, CV, RMSSD, SDSD, NN50, pNN50%, %VLF, %LF, %HF, LF/HF, ИН - индекс напряжение регуляторных систем SI - stress index, вариационный размах, индекс цетрализации (IC).

На фиг. 1 представлена схема работы фотодиодного анализатора капиллярного кровотока; на фиг. 2 - общий вид устройства, установленного по месту диагностирования.

Корпус предлагаемого устройства выполнен полый из биоинертной пластмассы П-образной формы, на внутренней поверхности концов которого расположены элементы для фиксации устройства относительно челюсти пациента, выполненные в виде зацепов из силиконового материала или универсально адаптированных зажимов, а в одной из стенок корпуса выполнено отверстие для прохождения световых сигналов (выхода и входа) (элементы для фиксации и отверстие на чертеже не показаны).

Внутри корпуса устройства расположена материнская плата 1 с аккумулятором 2 и входом Туре-С для зарядки аккумулятора 2 и кабеля для сопряжения с внешним устройством 3 (вход на схеме не показан).

На материнской плате 1 расположены имеющие общую систему питания модули: модуль 3 оптоэлектронного датчика, фильтр 4, модуль 5 агрегатирования и модуль 6 транслятора данных на внешнее устройство 7.

Модуль 3 оптоэлектронного датчика типа пульсоксиметрии включает в себя фотодиоды трех цветовых спектров: красного (670±5 нм), зеленого (530±10 нм), инфракрасного (940±5 нм) для посыла светового излучения на слизистую поверхность 8 полости рта и фоторезистор для приема отраженных излучений от форменных элементов крови (фоторезистор на схеме не показан).

Модуль 3 оптоэлектронного датчика генерирует свет различного спектра. Разный цветовой спектр необходим для более точного определения цветовых показателей форменных элементов крови, так как при разной длине волны меняется светоотражение и светопреломление, благодаря чему сравнивают форменные элементы крови.

Фильтр 4 оценивает влияние окружающих световых волн на работу модуля 3 оптоэлектронного датчика.

Фильтр 4 регистрирует внешние световые волны, например естественный свет или освещение помещения, в котором проводят диагностику, и регулирует работу оптоэлектронного датчика при агрессивном воздействии внешних факторов (включает, выключает, не учитывает полученные во время воздействия данные).

Фильтр 4 имеет возможность блокировать анализ временных данных, сохраняя предыдущие данные, при нарушении контакта с поверхностью слизистой оболочки пол ости |рта,; что позволяет увеличить точность диагностики.

Модуль 5 агрегатирования представлен 4-х канальной системой микроконтроллера, необходимого для сбора, обработки и структурирования полученных данных (перевода аналоговых сигналов в цифровые сигналы), и передачи при помощи модуля 6 транслятора на внешнее устройство 7, например, персональный компьютер, смартфон и др..

Полученные данные с модуля 5 агрегатирования передаются на удаленное устройство 7 при помощи модуля 6 трансляции Bluetooth/Wi-Fi и анализируются программным обеспечением внешнего устройства 7 при помощи статистических и геометрических методов оценки В СР. -

Устройство используют следующим образом:

Включают питание устройства, создают сопряжение с внешним устройством 7, на котором установлено программное обеспечение, и размещают П-образный корпус устройства во рту пациента в исследуемой области.

Устройство помещают в область второго большого коренного зуба нижней челюсти справа или слева (для основной диагностики) или в иных местах (для локальной диагностики регионарного микроциркуляторного кровообращения).

Устройство фиксируют на анатомических образованиях (в зависимости от клинического случая) при помощи зацепов или зажимов таким образом, чтобы модуль 3 оптоэлектронного датчика был направлен на слизистую оболочки полости рта

Фотодиоды модуля 3 оптоэлектронного датчика излучают свет через поверхность 8 слизистой на стенки кровеносных сосудов и форменные элементы крови. Отраженный свет регистрирует фоторезистор, от него полученное электрическое сопротивление передается на модуль 5 агрегатирования, где происходит оцифровка данных и их структурирование. Цифровые данные с модуля 5 агрегатирования передаются на внешнее устройство 7, при помощи модуля трансляции 6, где программное обеспечение осуществляет анализ вариабельности сердечного ритма получение готовых данных.

При нарушении контакта с поверхностью 8 слизистой оболочки полости рта, что возможно в случае агрессивного воздействия внешних световых факторов или отрыве датчика от исследуемой поверхности, фильтр 4 блокирует анализ временных данных, сохраняя предыдущие данные.

Предлагаемое устройство с помощью модуля 3 оптоэлектронного датчика типа пульс-оксиметрии, фоторезистора для приема излучения и фильтра 4 позволяет оперативно получить результаты анализа ЭКС.

Полученные диагностические данные фотопроницаемости кровеносного русла анализируют программным обеспечением удаленного внешнего устройства 7 различными статистическими и геометрическими методами оценки ВСР. База данных и модуль верификации в программном обеспечении позволят диагностировать стрессовое состояние пациента, изучить показатель восстановления функциональных резервов организма и его адаптационные способности организма, как во время стоматологического приема, так и на приеме у врача-терапевта.

Предлагаемое устройство предназначено для диагностики кровообращения в полости рта, что позволяет оценить функциональные характеристики локального кровотока полости рта и произвести региональную оценку кровеносной системы, и выявить заболевания сердечно-сосудистой системы (инфаркт миокарда, гипертоническая болезнь, стенокардия), и нарушения метаболических и энергетических процессов в организме.

Устройство позволит оценить эффективность лечебно профилактических мероприятий на любом этапе лечения и наблюдения, ввиду своей неинвазивности поможет скорректировать схему проведения фармакотерапии. Устройство позволит оценить состояние оптимального напряжения регуляторных систем, необходимое для поддержания активного равновесия организма со средой, тем самым повысив уровень и качество жизни современного человека.

1. Фотодиодный анализатор капиллярного кровотока, содержащий корпус, внутри которого расположены оптоэлектронный датчик фотоплетизмографии, фильтр, модуль Bluethooth для связи с удаленным внешним устройством и аккумулятор, отличающийся тем, что корпус выполнен П-образной формы, на внутренней поверхности концов которого расположены элементы для фиксации относительно челюсти пациента, при этом одна из стенок корпуса выполнена с отверстием для прохождения световых сигналов, подаваемых на слизистую поверхность полости рта, расположенного внутри корпуса модуля оптоэлектронного датчика, представленного тремя излучателями: красного, зеленого и инфракрасного излучения, и фоторезистора для приема отраженного излучения, при этом фильтр при нарушении контакта между поверхностью слизистой оболочки полости рта и модулем оптоэлектронного датчика имеет возможность блокировать анализ временных данных, сохраняя при этом предыдущие данные, поступающие на модуль агрегатирования - микроконтроллер, передающий данные для анализа программным обеспечением удаленного внешнего устройства различными статистическими и геометрическими методами оценки вариабельности сердечного ритма.

2. Фотодиодный анализатор капиллярного кровотока по п. 1, отличающийся тем, что корпус выполнен полым из биоинертной пластмассы.

3. Фотодиодный анализатор капиллярного кровотока по п. 1, отличающийся тем, что элементы для фиксации относительно челюсти пациента выполнены в виде зацепов из силиконового материала или универсально адаптированных зажимов.

4. Фотодиодный анализатор капиллярного кровотока по п. 1, отличающийся тем, что диапазон световых сигналов излучателей красного 670±5 нм, зеленого 530±10 нм и инфракрасного 940±5 нм.



 

Похожие патенты:

Группа изобретений относится к области медицины, а именно к неврологии, и биотехнологии. Раскрыта тест-модель для исследования действия лекарственных препаратов на заболевание рассеянным склерозом in vitro, характеризующаяся тем, что представляет собой первичную культуру олигодендроцитов, полученную эксплантатным методом, путем размещения свежеиссеченных фрагментов мозжечка новорожденных крысят на стеклянных покровных стеклах в чашках Петри с диаметром основания 35 мм, при этом покровные стекла покрыты подложкой, обеспечивающей прикрепление, распластывание и движение культивируемых клеток, а сверху размещен слой питательной среды, обеспечивающий рост культивируемых клеток.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для прогнозирования высокого риска рецидива у пациенток с IB стадией рака шейки матки, получивших комбинированное лечение.

Изобретение относится к медицине, а именно к экспериментальной нейроморфологии, и может быть использовано для оценки степени влияния экспериментальной ишемии на нервную ткань головного мозга белых крыс при окрашивании препаратов гематоксилином и эозином.

Изобретение относится к медицине, а именно к экспериментальной нейроморфологии, и может быть использовано для оценки степени влияния экспериментальной ишемии на нервную ткань головного мозга белых крыс при окрашивании препаратов гематоксилином и эозином.

Изобретение относится к медицине, а именно к репродуктивным технологиям, и может быть использовано для определения количества сперматозоидов с фрагментированными участками ДНК (IFn, %).

Изобретение относится к медицине, а именно к лабораторной диагностике для изучения вязкости ротовой жидкости по сравнению с вязкостью воды. Для этого 1 каплю ротовой жидкости или дистиллированной воды наносят на фильтровальную бумагу, помещенную в рамку типа пяльцев с одинаковой высоты от поверхности фильтровальной бумаги.

Изобретение относится к способу определения реологических свойств крови. Способ включает оценку деформируемости эритроцитов под давлением внешней силы без нарушения целостности клеток.

Изобретение относится к области медицины, а именно экспериментальной медицины, и может быть использовано для прижизненных наблюдений за уровнем активных форм кислорода (АФК) в органах и тканях.
Изобретение относится к медицине, а именно к микробиологической диагностике, и может быть использовано для подготовки и посева атеросклеротической бляшки для микробиологического исследования.
Изобретение относится к медицине, а именно к микробиологической диагностике, и может быть использовано для подготовки и посева атеросклеротической бляшки для микробиологического исследования.
Изобретение относится к медицине, а именно к акушерству и патологической физиологии, и может быть использовано для прогнозирования риска угрозы прерывания беременности ранних сроков при обострении цитомегаловирусной инфекции.
Наверх