Защитный состав от образования пирофорных отложений, образованных соединениями сероводорода с железом

Изобретение относится к защитным составам на основе полиуретана, позволяющим защитить металлические поверхности от образования пирофорных отложений, и может быть использовано в нефтегазовой отрасли, в том числе для окрашивания металлических поверхностей. Сущность изобретения заключается в сочетании полиуретановой смолы с диоксидом титана при следующем соотношении компонентов защитного состава, мас. ч.: полиуретановая смола 100; диоксид титана 1,0-1,5; растворитель Р-4 20; отвердитель 26. Технический результат: получение маслобензостойкого покрытия с защитными свойствами от образования пирофорных отложений и снижение скорости коррозии металлической поверхности. 2 табл.

 

Изобретение относится к защитным составам на основе полиуретана, позволяющим защитить от образования пирофорных отложений металлические поверхности, и может быть использовано в нефтегазовой отрасли.

Пирофорные отложения - вещества, способные при взаимодействии с кислородом воздуха самовозгораться. Основная причина их взаимодействия с кислородом воздуха и окисления - наличие в их составе сульфидов железа, которые образуются в результате реакции железа и оксидов с сероводородом и элементарной серой. Основная часть пирофорных отложений образуется на внутренней поверхности резервуаров для хранения нефти и нефтепродуктов. Основные реакции образования сульфидов в пирофорных отложениях:

Fe2O3+3H2S=Fe2S3+3H2O;

FeO+H2S=FeS+H2O;

Fe+H2S=FeS+H2.

Для предотвращения образования пирофорных отложений необходимо исключить взаимодействие сероводорода с железом и оксидами железа на внутренней поверхности резервуаров. Для этого можно использовать покрытия, устойчивые к воздействию нефти и нефтепродуктов.

Известен способ предотвращения образования пирофорных отложений из сероводородсодержащих нефтепродуктов (Патент на изобретение RU 2253698С1, МПК C23F 15/00, C01G 49/12, 2005 г.), заключающийся в заполнении свободного пространства резервуаров, содержащих нефть и нефтепродукты, газообразным азотом с избыточным давлением 50-500 мм вод. ст. и содержанием свободного кислорода не более 5 об. %. Недостатком этого способа является его дороговизна за счет необходимости установки оборудования для поддержания давления газообразного азота в паровоздушном пространстве резервуара для хранения нефти и нефтепродуктов.

Существует способы обработки пирофорных отложений различными веществами для их дезактивации либо окисления: использование ингибитора ИНФХ-1 (SU 825102, 30.04.1981), трилона Б (SU 1404462, 23.06.1988), водного раствора гидролизованного привитого сополимера акрилонитрила и бутадиенстирольного каучука (SU 1404463, 23.06.1988) для снижения скорости реакции окисления, использование в качестве дезактиватора культуры тионовых бактерий Thiobacillus ferrooxidans (патент на изобретение ЕА 201500894А1, МПК C01G 49/12, B01D 53/84, C12N 1/20, C12R 1/01, 2016 г.) и другие.

Недостатками этих способов является дороговизна (использование дорогих реагентов), сложность доставки реагентов. Также они предусматривают обработку уже образовавшихся отложений и не предназначены для защиты от их образования. Такие способы остаются пожароопасными, т.к. требуют опорожнения резервуаров перед их обработкой, что не исключает возможности самовозгорания пирофорных отложений.

Полиуретановое покрытие является устойчивым к воздействию нефти и нефтепродуктов, однако не является надежной защитой от воздействия сероводорода, содержащегося в нефти и нефтепродуктах.

Техническим результатом изобретения является получение масло-бензостойкого покрытия с защитными свойствами от образования пирофорных отложений и снижение скорости коррозии металлической поверхности.

Новым в рецептуре состава является сочетание полиуретановой смолы с диоксидом титана, мас.ч.: полиуретановая смола 100; диоксид титана 1,0-1,5; отвердитель – 26, растворитель Р-4 20. Добавление диоксида титана, являющегося катализатором окисления сернистых соединений, позволяет снизить количество сероводорода, который взаимодействует с железом в стенке резервуаров для хранения нефти и нефтепродуктов.

Техническую сущность и преимущества предлагаемого состава иллюстрируют следующие примеры:

1. В 100 мас.ч. полиуретановой смолы при постоянном перемешивании вводят 20 мас.ч. растворителя Р-4, 26 мас.ч. отвердителя. В качестве материала образцов для всех видов испытаний использовали образцы из малоуглеродистой стали типа Ст3 размерами 100×40×4 мм. Подготовка включала в себя очистку поверхности растворителем (Растворитель универсальный №1) и последующую ручную чистку абразивной шкуркой с последовательным применением шкурок Р60, Р100, Р120. Нанесение состава на стальные образцы производили при помощи кисти. Получаемые покрытия сушили в естественных условиях при относительной влажности воздуха 55-60% в течение 10 дней. Толщина покрытия во всех случаях составляла 100-130 мкм. Оценку адгезии проводили в соответствии ГОСТ 32702.2-2014. Стойкость покрытия к статическому воздействию жидкости (прямогонный бензин) оценивали по ГОСТ 9.403-80 (метод А) по визуальному состоянию внешнего вида и изменению адгезии покрытий. Коррозионную стойкость покрытия оценивали по ГОСТ Р 9.905-2007.

2. В 100 мас.ч. полиуретановой смолы при постоянном перемешивании вводят последовательно 1 мас.ч. диоксида титана, 20 мас.ч. растворителя Р-4, 26 мас.ч. отвердителя. Проведение испытаний проводилось аналогично с примером 1.

3. В 100 мас.ч. полиуретановой смолы при постоянном перемешивании вводят последовательно 1,3 мас.ч. диоксида титана, 26 мас.ч. отвердителя. Проведение испытаний проводилось аналогично с примером 1.

4. В 100 мас.ч. полиуретановой смолы при постоянном перемешивании вводят последовательно 1,5 мас.ч. диоксида титана, 20 мас.ч. растворителя Р-4, 26 мас.ч. отвердителя. Проведение испытаний проводилось аналогично с примером 1.

5. В 100 мас.ч. полиуретановой смолы при постоянном перемешивании вводят последовательно 1,7 мас.ч. диоксида титана, 20 мас.ч. растворителя Р-4, 26 мас.ч. отвердителя. Проведение испытаний проводилось аналогично с примером 1.

В табл. 1 дана рецептура предлагаемого состава. В табл. 2 представлены данные по физико-механическим и защитным свойствам.

Изменение содержания диоксида титана приводит к изменению свойств получаемого покрытия. Увеличение стойкости покрытия и снижение скорости коррозии при воздействии сероводорода осуществляется за счет каталитического воздействия диоксида титана. Снижение скорости коррозии говорит об отсутствии возникновения пирофорных отложений, т.к. наблюдается снижение образования продуктов коррозии.

Защитный состав от образования пирофорных отложений, образованных соединениями сероводорода с железом, включающий полиуретановую смолу, отвердитель, раcтворитель Р-4, отличающийся тем, что он дополнительно содержит диоксид титана при следующем соотношении компонентов, мас. ч.:

полиуретановая смола 100
диоксид титана 1,0-1,5
отвердитель 26
растворитель Р-4 20



 

Похожие патенты:
Изобретение относится к теплоснабжения гражданских и промышленных зданий и сооружений. Способ предотвращения коррозии внутренней поверхности стальных труб водяного теплоснабжения заключается в электромагнитном воздействии на трубы катушками индуктивности, включаемыми в стандартную промышленную электросеть, и подаче носителя через нагреватель.

Изобретение относится к изготовлению постоянных магнитов на основе сплавов Nd-Fe-B. Способ включает прессование заготовок, их механическую обработку, нанесение на поверхность слоя алюминия толщиной 10-15 мкм холодным газодинамическим напылением и термообработку в расплаве солей с последующим охлаждением.

Изобретение относится к области стабилизации активной коррозии металлических изделий, в частности археологических находок из железа и его сплавов, и может быть использовано в археологии и музейном деле.

Изобретение относится к области защиты металлов от коррозии и образования отложений на поверхностях трубопроводов систем теплоснабжения и водоснабжения. Устройство включает циркуляционный насос, сообщенный через соединительный трубопровод с котлом, трубопровод подачи воды, обратный трубопровод тепловой сети, гидравлически сообщенные между собой, блок обработки жидкости и генераторный блок, электрически и независимо соединенный с циркуляционным насосом, блоком обработки жидкости и котлом, при этом в качестве генераторного блока использован источник переменного трехфазного напряжения, создающий переменное напряжение в резонансном звуковом диапазоне частот 32-35 кГц, а на соединительном трубопроводе, выполненном из диамагнитного материала, установлен блок обработки жидкости в виде цилиндрического немагнитного корпуса, имеющего внутри магнитострикционный источник ультразвуковых колебаний, а снаружи - с осевым сквозным отверстием дополнительный корпус из диамагнитного материала с электромагнитной системой, состоящей из магнитопровода, выполненного в виде нескольких ферритовых колец, установленных друг от друга на расстоянии, не допускающем перекрытия вращающихся магнитных полей, причем на каждом из ферритовых колец расположена катушка из не менее трех обмоток с выводами, подключенными по схеме «звезда», а сами катушки соединены параллельно и подключены к генераторному блоку, при этом корпус с электромагнитной системой заполнен компаундом.
Изобретение относится к области судостроения, в частности к технологии защиты сменного инструмента, изготовленного из разнородных металлов, работающего в морской воде, от контактной и электрохимической коррозии.

Изобретение относится к способу обработки потока углеводородов, включающему: прохождение углеводородного потока через емкость для обработки углеводородов; нагревание, по меньшей мере, части внутренней поверхности емкости до предварительно заданной температуры, составляющей 400°C или выше в течение 300 часов или более; выявление зон внутренней поверхности емкости для обработки углеводородов, которая поддерживается при предварительно заданной температуре и подвержена воздействию хлоридов с концентрацией более 1 ч./млн; контроль сенсибилизации и коррозийного растрескивания под напряжением в среде хлоридов, которые происходят в подверженной воздействию хлоридов зоне емкости для обработки углеводородов, путем выполнения указанной части внутренней поверхности емкости для обработки углеводородов из новой аустенитной нержавеющей стали, содержащей 0,005-0,020 мас.% углерода, 10-30 мас.% никеля, 15-24 мас.% хрома, 0,20-0,50 мас.% ниобия, 0,06-0,10 мас.% азота, до 5% меди и 1,0-7 мас.% молибдена, а других зон из другого материала для ограничения сенсибилизации и коррозийного растрескивания под напряжением в среде хлоридов, подверженных воздействию хлоридов зон внутренней поверхности.

Устройство относится к области подавления коррозии и защиты от коррозии металлических объектов, в том числе конструкций и сооружений, а также трубопроводов, транспортирующих жидкие и газообразные вещества.

Изобретение относится к электростатической обработке жидкостей и изменению свойств жидкости, формированию центров кристаллизации или коагуляции. Способ обработки жидкости заключается в электростатическом воздействии через центральный электрод 8 сдвоенного конденсатора, имеющий контакт с жидкостью и не имеющий непосредственного подключения к источнику питания.

Изобретение относится к антикоррозионной защите металлических трубопроводов для предотвращения коррозионного разрушения их внутренних и наружных поверхностей и может быть использовано в нефтегазовой промышленности, сфере коммунального хозяйства для снижения аварийности при эксплуатации трубопроводов, транспортирующих коррозионно-активные вещества, проложенных подземным, наземным и надземным способом.
Изобретение относится к способу обработки поверхности стали. Осуществляют подготовку поверхности путем очистки от окалины и обработку лазерным лучом.

Изобретение относится к способу получения чистого халькопирита (CuFeS2) из растворов, содержащих металлы, с использованием ацидотолерантных сульфатредуцирующих бактерий (АСРБ).
Наверх