Способ оценки миграции клеток в структуру материала или скаффолда



Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
Способ оценки миграции клеток в структуру материала или скаффолда
G01N1/30 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2740566:

Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук (ИМХ РАН) (RU)

Изобретение относится к области медицины. Предложен способ оценки миграции клеток в структуру материала или скаффолда. На образцы материала или скаффолда высевают интактные мезенхимальные стволовые клетки или фибробласты, затем образцы с клетками окрашивают флуорохромом, проводят флуоресцентную микроскопию в 10 полях зрения с послойной съемкой по оси Z на глубину миграции клеток в структуру образца, с фиксацией глубины залегания ядер клеток относительно поверхности образца и последующим расчетом скорости миграции клеток в структуру материала или скаффолда по формуле A=B/t. Изобретение обеспечивает удешевление, сокращение временных затрат, трудоемкости и повышение доступности способа для оценки миграции клеток в структуру материала/скаффолда. 2 табл., 2 пр., 10 ил.

 

Предполагаемое изобретение относится к биомедицине, медицине, биотехнологии, регенеративной медицине, в частности к способам оценки миграции клеток в толщу материала или скаффолда.

В настоящее время благодаря развитию новых уникальных технологий во всем мире разрабатываются биосовместимые конструкции и материалы, расширяющие применение биомедицинских продуктов для замещения или восстановления поврежденных или утраченных тканей и органов. Одной из базовых характеристик, которой должны обладать материалы и скаффолды, предназначенные для заселения клетками и создания биомедицинских продуктов - это пористость («Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends» Salerno, Maio, Iannace, Netti Journal of Porous Materials volume 19, pagesl81-188 2012). Наличие системы взаимосвязанных пор позволяет клеткам заселить материал или скаффолд и нормально функционировать в дальнейшем, что, в конечном счете, обеспечивает целостность создаваемого биомедицинского клеточного продукта и его интеграцию в ткани реципиента при имплантации. Заселение материала / скаффолда происходит при высеве клеток на их поверхность in vitro либо путем рекрутинга клеток из окружающих тканей после его имплантации (Rnjak-Kovacina, J., Wise, S., Li, Z., Maitz, P., Young, C, Wang, Y., and Weiss, A. «Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering». Biomaterials 32, 6729, 2011; Freed LE1, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R. «Biodegradable polymer scaffolds for tissue engineering». Biotechnology 1994 Jul; 12(7):689-93.). Клетки должны мигрировать в структуру материала / скаффолда и заселить создаваемый на их основе конструкт. В тоже время наличие пористости материала / скаффолда как таковой еще не гарантирует успешной миграции клеток в его структуру. Так, малый размер пор, отсутствие межпоровых пространств, особенности свойств поверхности внутренней структуры и т.д. могут препятствовать миграции клеток и не позволить им заселить материал / скаффолд (Takahashi, Y., and Tabata, Y. «Effect of the fiber diameterand porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells». J Biomater Sci Polym Ed 15, 41, 2004). В связи с этим оценка миграции клеток в структуру образцов является одним из важнейших показателей при разработке материалов / скаффолдов. Однако, новые материалы / скаффолды часто являются плотными и непрозрачными, в связи с чем они становятся недоступными для исследования обычными оптическими методами. Поэтому разработка новых способов оценки миграции клеток в структуру материала /скаффолда является актуальной задачей, решение которой позволит на этапе in vitro разработки материалов / скаффолдов спрогнозировать возможность их заселения клетками и провести отбор наиболее перспективных образцов для дальнейшей разработки биомедицинских продуктов. Прогнозирующее тестирование in vitro новых материалов / скаффолдов требует современных ревалентных способов, позволяющих проводить не только качественную, но и количественную оценку. Такой подход является неотъемлемой частью во время доклинических исследований в качестве предварительного этапа перед началом исследований in vivo. В тоже время, существующие методы оценки миграционной способности клеток не являются универсальными и часто позволяют оценить только миграционную активность самих клеток, но не их миграционную способность в структуру материала. Так, например, одними из самых распространенных методов оценки миграционной активности клеток in vitro является оценка миграции клеток с помощью камеры Брейдона или теста "раны монослоя" клеток (Э.В. Бойко, Д.С. Мальцев, В.О. Полякова Влияние рекомбинантного активатора плазминогена урокиназного типа на клеточную культуру пигментного эпителия сетчатки человека // Вестник офтальмологии 2017, 1, С. 42-48). Данный метод оценки миграции клеток имеет ряд преимуществ, как то не требует специального оборудования или реагентов. Через несколько часов после "ранения" монослоя направленная коллективная миграция легко оценивается и определяется количественно. Однако данный способ не может использоваться с целью оценки миграции клеток в структуру материала. Он позволяет проводить оценку миграционной способности непосредственно культуры клеток и клеток под воздействием, например, тестируемых жидкостей.

В качестве прототипа выбран способ, применяемый для оценки миграционной способности фибробластов кожи человека (ФЧ), мезенхимных стромальных клеток жировой ткани человека (МСК-ЖТ) и эпидермальных кератиноцитов (ЭКЦ), в толщу непрозрачного 3D пластического материала в виде губки толщиной 10 мм (Рахматуллин Рамиль Рафаилевич «Биопластический материал на основе гидроколлоида гиалуроновой кислоты и пептидного комплекса для восстановительной и реконструктивной хирургии» Автореферат диссертации на соискание ученой степени доктора биологических наук, М: 2014), включающий предварительное трансфицирование ФЧ геном зеленого флуоресцирующего белка EGFP под CMV-промотором или предварительное трансфицирование геном красного флуоресцирующего белка TagRFP под CMV-промотором (МСК-ЖТ, ЭКЦ) при помощи лентовирусной конструкции, после чего клетки можно наблюдали на губке с помощью широкопольного флуоресцентного микроскопа Olympus IX51 (Olympus, Япония) по видеозаписи с трехсуточными циклами на протяжении периода культивирования до 26 суток.

Способ, представленный в прототипе, требует дорогостоящих, изготавливаемых только под заказ расходных материалов, в частности конструирование лентивирусного вектора, кодирующего указанную заказчиком последовательность ДНК под контролем универсального промотора цитомегаловируса человека (CMV). Еще одним недостатком является длительность и трудоемкость способа, так как наработка лентивирусных частиц с необходимым титром (с титром 105-106 TU/мл) требует затрат временного ресурса, кроме того работа с конструированием лентивирусов проводится в ограниченном количестве биотехнологических компаний, как в России, так и за рубежом, что резко ограничивает применимость метода. В предложенном способе, в качестве репортерных генов использовали сразу два цветных флуоресцентных белка: зеленый флуоресцирующий белок EGFP для фибробластов кожи человека и красный флуоресцирующий белок TagRFP для мезенхимных стромальных клеток жировой ткани человека (МСК-ЖТ) и эпидермальных кератиноцитов. Следовательно, все перечисленные денежные и временные затраты увеличиваются как минимум вдвое. В итоге, для реализации всего способа необходимы редкие, изготавливаемые только под заказ, лентивирусные конструкции, дорогостоящие технологии и значительные временные затраты.

Задача предполагаемого изобретения - усовершенствование способа.

Технический результат - удешевление, сокращение временных затрат, трудоемкости и повышение доступности способа для оценки миграции клеток в структуру материала /скаффолда.

Технический результат достигается за счет того, что в способе, включающем высев культуры клеток на исследуемый образец и оценку их миграции в толщу материала с использованием широкопольной флуоресцентной микроскопии, на образцы материала или скаффолда высевают интактные мезенхимальные стволовые клетки или фибробласты, затем последовательно через 24, 72 и 144 часа образцы с клетками окрашивают флуорохромом, обладающим высокой специфичностью к двухцепочечной молекуле ДНК, проводят флуоресцентную микроскопию в 10 полях зрения с послойной съемкой по оси Z на глубину миграции клеток в структуру образца, с фиксацией глубины залегания ядер клеток относительно поверхности образца и последующим расчетом скорости миграции клеток в структуру материала или скаффолда по формуле: A=B/t, где А - скорость миграции клеток в структуру образца материала или скаффолда (μm/ч); В - средняя величина глубины миграции клеток в структуру образца по 10 полям зрения (μm); t - время с момента высева клеток на поверхность образца до момента исследования.

Способ оценки миграционной способности клеток в структуру материала или скаффолда осуществляют следующим образом:

Шаг 1. На образцы материала или скаффолда высевают культуру мезенхимальных стволовых клеток или дермальных фибробластов человека с плотностью высева 10 тыс./см2. Образцы помещают в СO2-инкубатор и культивируют при 37°С и 5% СO2.

Шаг 2. В контрольные сроки (например, 24, 72 или 144 часа), образец материала помещают в 24-луночный планшет для флуоресцентной микроскопии с непрозрачными боковыми стенками. Затем проводят прижизненное окрашивание ядер клеток, высеянных на образец флуорохромом, обладающим высокой специфичностью к двухцепочечной молекуле ДНК (например, флуорохром Hoechst 33342). Для этого в лунку, содержащую образец и 2 мл культуральной среды (DMEM или α-МЕМ содержащей 10% эмбриональной телячьей сыворотки), добавляют прижизненный краситель, который обладает высокой специфичностью к двухцепочечной молекуле ДНК, согласно инструкции производителя (например, 1 мкл раствора Hoechst 33342 в концентрации 10 мкг/мл). Планшет помещают в термостат и инкубируют в течение 30 мин. при 37°С. После инкубации образец дважды отмывают фосфатным буфером. Затем к образцу добавляют 1 мл фосфатного буфера для предотвращения пересыхания образца.

Шаг 3. Планшет образцом переносят на оборудование, позволяющее проводить широкопольную флуоресцентную микроскопию (например, имиджер Cytation™ 5). В 10 полях зрения с использованием объектива с 4-кратным увеличением проводят послойную съемку по оси Z. Съемку по оси Z проводят, используя функцию Z-stack, от первой клетки (которая лежит на поверхности материала) до последней клетки (которая максимально глубоко мигрировала в толщу материала).

Шаг 4. Снимки в количестве 10 штук полученные по п. 3 обрабатываются с целью наблюдения трехмерного распределения клеток по структуре материала. Проводят анализ послойных снимков материала с клетками от верхних слоев к более глубоким, фиксируя начальный уровень поверхности образца (Н) и глубину миграции клеток в структуру материала (М) - глубину залегания ядер в структуре образца относительно поверхности образца). Для каждого поля зрения рассчитывают абсолютное значение глубины миграции клеток по формуле Г=М-Н. Рассчитывают среднюю величину глубины миграции клеток в структуру материала по 10 полям зрения (В) по формуле В=(Г1+Г2+…Г10)/10, где Г1 - абсолютное значение глубины миграции клеток на снимке 1, Г2 - абсолютное значение глубины миграции клеток на снимке 2. и т.д.

Шаг 5. Проводят расчет скорости миграции клеток в структуру материала по формуле: A=B/t, где А - скорость миграции клеток в структуру образца материала или скаффолда (μm/ч); В - средняя величина глубины миграции клеток в структуру образца по 10 полям зрения (μm); t - время с момента высева клеток на поверхность образца до момента исследования.

Полученные данные позволяют оценить миграцию клеток в структуру материала или скаффолда по изменению значения Z-stack в течение времени и расчитать скорость миграции клеток.

Способ оценки миграции клеток в структуру материала или скаффолда поясняется фигурами, приложенными к данному описанию.

Фиг. 1. Пример микрофотоснимка исследуемого образца, полученного при послойной съемке по оси Z с использованием широкопольной флуоресцентной микроскопии. Начальный уровень поверхности образца, глубина по оси Z=106 μm.

Фиг. 2 Пример микрофотоснимка исследуемого образца, полученного при послойной съемке по оси Z с использованием широкопольной флуоресцентной микроскопии. Промежуточный микрофотоснимок, глубина по оси Z=318 μm.

Фиг. 3 Пример микрофотоснимка исследуемого образца, полученного при послойной съемке по оси Z с использованием широкопольной флуоресцентной микроскопии. Промежуточный микрофотоснимок, глубина по оси Z=530 μm.

Фиг. 4. Пример микрофотоснимка исследуемого образца, полученного при послойной съемке по оси Z с использованием широкопольной флуоресцентной микроскопии. Глубина по оси Z=689 μm, глубже ядра клеток не фиксировались.

Фиг. 5 Пример получаемых фотографий с образца с послойной съемкой по оси Z с использованием широкопольной флуоресцентной микроскопии. Начальный уровень поверхности образца - по оси Z=105 μm.

Фиг.6 Пример получаемых фотографий с образца с послойной съемкой по оси Z с использованием широкопольной флуоресцентной микроскопии. Промежуточный микрофотоснимок - по оси Z=119μm.

Фиг. 7 Пример получаемых фотографий с образца с послойной съемкой по оси Z с использованием широкопольной флуоресцентной микроскопии. Промежуточный микрофотоснимок - по оси Z=134μm.

Фиг. 8 Пример получаемых фотографий с образца с послойной съемкой по оси Z с использованием широкопольной флуоресцентной микроскопии. Промежуточный микрофотоснимок - по оси Z=148μm.

Фиг. 9 Пример получаемых фотографий с образца с послойной съемкой по оси Z с использованием широкопольной флуоресцентной микроскопии. Промежуточный микрофотоснимок - по оси Z=162μm.

Фиг. 10 Пример получаемых фотографий с образца с послойной съемкой по оси Z с использованием широкопольной флуоресцентной микроскопии. Финальный снимок - глубина по оси Z=177 μm.

Достижение заявленного технического результата подтверждается следующими примерами.

Пример 1.

Пример 2.

Пример 1

Для оценки миграции клеток в структуру костнозамещающего материала на основе гидроксиапатита, коллагена и сульфатированных гликозаминогликанов был взят образец материала и согласно представленному способу, на его поверхность были высеяны интактные мезенхимальные стволовые клетки, как описано в шаге 1 данного способа. Далее согласно шагам 2-4 данного способа через 72 часа была проведена окраска и широкопольная флуоресцентная микроскопия с послойной съемкой по оси Z на имиджере Cytation™5. В результате в 10 полях зрения с использованием объектива с 4-кратным увеличением проведена послойная съемка по оси Z на глубину визуализации от поверхности образца (первой клетки на поверхности) до последней клетки в структуре материала (Фиг. 1-4) с фиксацией глубины миграции клеток в структуру материала (глубины залегания ядер в структуре образца относительно поверхности образца) и последующим расчетом скорости миграции клеток в структуру материала согласно шагу 5 данного способа.

Согласно полученным результатам костнозамещающии материал, в состав которого входит гидроксиапатит, коллаген и сульфатированные гликозаминогликаны, позволяет клеткам проявлять высокую миграционную способность в структуру материала. Клетки в среднем мигрировали на глубину 594 μm со 8,25 μm/ч (Табл. 1).

Пример 2

Для оценки миграционной способности клеток были взят образец скаффолда сформированного на основе олигоэфир(мет)акрилатов. На образцы скаффолда были высеяны интактные фибробласты, как описано в шаге 1 представленного способа. Далее, согласно шагам 2-4 способа через 144 часа была проведена окраска и исследование с использованием широкопольной флуоресцентной микроскопии с послойной съемкой по оси Z на имиджер Cytation™ 5. В результате в 10 полях зрения с использованием объектива с 4-кратным увеличением проведена послойная съемка по оси Z на глубину визуализации от первой (на поверхности) до последней (в толще материала) клетки, с фиксацией глубины миграции клеток в структуру материала (глубины залегания ядер в структуре образца относительно поверхности образца) и последующим определением скорости миграции клеток в структуру материала согласно шагу 5 данного способа (Фиг. 5-10).

Таким образом, предложенный способ позволяет оценить миграцию клеток в структуру материала или скаффолда и определить скорость и время миграции клеток.

Согласно полученным результатам образец скаффолда сформированного на основе олигоэфир(мет)акрилатов не позволял клеткам активно мигрировать в структуру материала. Клетки в среднем мигрировали на глубину 67μm со 0,47 μm/ч (Табл. 2).

Таким образом, предложенный способ позволяет получить объективные данные позволяющие оценить миграцию клеток в структуру материала / скаффолда с использованием стандартных методов высева интактных клеток на исследуемый образец и достаточно простых и распространенных методов окрашивания образцов с их исследованием методом широкопольной флуоресцентной микроскопии. Способ не требует дорогостоящих, изготавливаемых только под заказ расходных материалов, а реализуется с использованием стандартных флуорохромов, что значительно удешевляет реализацию и повышает доступность представленного способа. Несомненным преимуществом способа является то, что он не требует длительных, сложных и трудоемких подготовок (например, наработка лентивирусных частиц с необходимым титром), требующих больших временных затрат, а реализуется стандартными методами, доступными многим биотехнологическим лабораториям. Использование для оценки миграции клеток в структуру материала/скаффолда съемки по 10 полям зрения по оси Z с фиксацией залегания глубины ядер позволяет объективно и с высокой степенью точности не только качественно охарактеризовать возможность миграции клеток в структуру (толщу) исследуемых, но и дать количественную оценку процесса рассчитав скорость миграции клеток.

Способ оценки миграции клеток в структуру материала или скаффолда, включающий высев культуры клеток на исследуемый образец и оценку их миграции в толщу материала с использованием флуоресцентной микроскопии, отличающийся тем, что на образцы материала или скаффолда высевают интактные мезенхимальные стволовые клетки или фибробласты, затем образцы с клетками окрашивают флуорохромом, обладающим высокой специфичностью к двухцепочечной молекуле ДНК, проводят флуоресцентную микроскопию в 10 полях зрения с послойной съемкой по оси Z на глубину миграции клеток в структуру образца, с фиксацией глубины залегания ядер клеток относительно поверхности образца и последующим расчетом скорости миграции клеток в структуру материала или скаффолда по формуле:

A=B/t, где

А - скорость миграции клеток в структуру образца материала или скаффолда (μm/ч);

В - средняя величина глубины миграции клеток в структуру образца по 10 полям зрения (μm);

t - время с момента высева клеток на поверхность образца до момента исследования.



 

Похожие патенты:

Изобретение относится к системам для in situ исследований и может быть использовано для экологического контроля и диагностики состояния акваторий по измерениям видовой концентрации и состояния фотосинтезирующих микроводорослей типа фитопланктона.

Группа изобретений относится к области биотехнологии. Предложен способ секвенирования полинуклеотидов и система визуализации для осуществления указанного способа.

Изобретение может быть использовано в биосенсорных системах. Сенсорная система распознавания включает в себя структуру датчика изображения и проточную ячейку.

Настоящее изобретение раскрывает систему формирования изображения с помощью структурированного освещения, в которой используется датчик изображения (например, активный пиксельный датчик) в активной плоскости структурированного образца для увеличения разрешения изображения.

Группа изобретений относится к спектроскопическому исследованию сырого картофеля. Способ обнаружения предшественников акриламида в сыром картофеле включает освещение поверхности сырого картофеля лучом света, измерение интенсивности внутренне рассеянного картофелем света, измерение интенсивности зеркально отраженного от поверхности картофеля света, генерирование сигнала обнаружения на основе отношения измеренной интенсивности внутренне рассеянного света и измеренной интенсивности зеркально отраженного света.

Изобретение относится к области измерительной техники и касается неразрушающего способа оценки состояния компонента турбины. Способ включает в себя генерирование лазером световых импульсов для нагрева компонента турбины, захват инфракрасных изображений и анализ характеристики компонента турбины на полученных изображениях.

Группа изобретений относится к детектированию флуоресценции. Детектор содержит структуру, образующую детекторную поверхность, выполненную с возможностью поддержания биологических или химических проб, набор фотоприемников, содержащий фотоприемники и схему для передачи сигналов, обусловленных фотонами, зарегистрированными фотоприемниками, и набор световодов.
Изобретение относится к области медицины и может быть использовано в ортопедической стоматологии. Раскрыт способ диагностики предраковых заболеваний слизистой оболочки полости рта, включающий исследование образца ротовой жидкости с помощью инструментальных методов исследования.

Изобретение относится к системе и способу лазерного детектирования, например к системе и способу для анализа газов на основе лазерной абсорбционной спектроскопии.

Система освещения и визуализации образца содержит линзу объектива, первый источник света для подачи первого света освещения через линзу объектива в проточную ячейку с помощью первой решетки на проточной ячейке, первый датчик изображения для захвата света визуализации с помощью линзы объектива, причем первая решетка расположена вне поля зрения первого датчика изображения; и второй датчик изображения, выполненный с возможностью захвата изображения по меньшей мере первой решетки и планарного волновода в проточной ячейке, причем система выполнена с возможностью оценки изображения путем оценки выравнивания света освещения относительно проточной ячейки.

Изобретение относится к системам для in situ исследований и может быть использовано для экологического контроля и диагностики состояния акваторий по измерениям видовой концентрации и состояния фотосинтезирующих микроводорослей типа фитопланктона.
Наверх