Подложка для исследования биологического образца методом сканирующей зондовой нанотомографии и способ ее получения

Использование: для исследований биологических образцов методом сканирующей зондовой нанотомографии (СЗНТ). Сущность изобретения заключается в том, что подложка для исследования биологического образца представляет собой пленку толщиной 1-100 мкм, которая содержит 5-100% фиброина шелка тутового шелкопряда Bombyx mori по массе. Предложен также способ получения указанной подложки, в котором для получения пленки водный раствор фиброина шелка тутового шелкопряда Bombyx mori лиофильно высушивают. После этого растворяют сухой лиофилизированный фиброин шелка в муравьиной кислоте до концентрации 1-100 мг/мл раствора. Полученный раствор наносят на поверхность для высушивания, а после полного высыхания раствора отделяют от поверхности для высушивания пленку из фиброина шелка. Технический результат: обеспечение возможности получения универсальной, прозрачной, механически прочной биосовместимой подложки для исследования биологического образца методом СЗНТ. 2 н. и 6 з.п. ф-лы, 3 ил.

 

Изобретение относится к области биотехнологии и может быть использовано в качестве подложки для исследований биологических образцов методом сканирующей зондовой нанотомографии (СЗНТ).

Известна подложка для исследований биологических образцов, представляющая собой кремниевую пластинку, покрытую пленкой Ленгмюра-Блоджетт из пяти мономолекулярных слоев органического соединения с общей толщиной пленки 6.5 нм [RU 110082, U1]. Такая подложка является гидрофобной и имеет показатель шероховатости до 1 нм, что уменьшает ее адгезионные свойства для биологических объектов. Способ получения данной подложки включает использование материалов, которые не позволяют применять ее для культивирования клеток и их дальнейшего анализа вследствие токсичности и гидрофобности. Данная подложка не является прозрачной, что исключает ее использование для исследований методами световой микроскопии и спектроскопии, которые в некоторых случаях являются необходимыми при получении биологических образцов для анализа.

Техническая проблема заключается в необходимости создания универсальной, механически прочной, прозрачной и биосовместимой подложки для подготовки и анализа биологических образов методом СЗНТ.

Технический результат, достигаемый при осуществлении патентуемой группы изобретений, заключается в обеспечении

- биосовместимости подложки для исследований биологических образцов, что обеспечивает возможность культивирования клеток на подложке, а также иммобилизации на подложке живых организмов и их частей;

- механической прочности подложки для исследований биологических образцов, что позволяет проводить манипуляции с биологическим образцом;

- универсальности подложки для исследований биологических образцов, что позволяет использовать подложку для исследований широкого спектра биологических образцов;

- прозрачности подложки, что делает возможным проведение дополнительных исследований методами световой микроскопии и спектроскопии,

- исключения присутствия остаточных количеств токсичных для клеток веществ в составе подложки, а также ее пригодности для исследований биологических образцов за счет предлагаемого способа получения подложки.

Сущность изобретения заключается в следующем.

Патентуется подложка для исследования биологического образца методом сканирующей зондовой нанотомографии, которая представляет собой пленку толщиной 1-100 мкм, которая содержит 5-100% фиброина шелка тутового шелкопряда Bombyx mori по массе.

Существует вариант, в котором подложка дополнительно содержит, по меньшей мере, одно вещество, способствующее адгезии и пролиферации клеток млекопитающего.

Предложен также способ получения указанной подложки, в котором для получения пленки водный раствор фиброина шелка тутового шелкопряда Bombyx mori лиофильно высушивают. После этого растворяют сухой лиофилизированный фиброин шелка в муравьиной кислоте до концентрации 1-100 мг/мл раствора. Полученный раствор наносят на поверхность для высушивания, а после полного высыхания раствора отделяют от поверхности для высушивания пленку из фиброина шелка.

Существует вариант, в котором пленку из фиброина шелка обрабатывают раствором, по меньшей мере, одного вещества, способствующего адгезии и пролиферации клеток млекопитающего, путем инкубации в растворе этого вещества.

Существует вариант, в котором в состав раствора фиброина шелка перед нанесением на поверхность для высушивания вводят, по меньшей мере, одно вещество, способствующее адгезии и пролиферации клеток млекопитающего, в количестве до 95% по массе.

Существует вариант, в котором подложку из фиброина шелка перед отделением или после отделения от поверхности для высушивания инкубируют в метаноле или этаноле в течение 10-60 минут.

Существует вариант, в котором подложку из фиброина шелка получают на поверхности посуды для культивирования клеток.

Существует вариант, в котором подложку из фиброина шелка на поверхности посуды для культивирования клеток инкубируют в метаноле или этаноле в течение 10-60 минут.

Изобретения поясняются следующими фигурами.

На Фиг. 1 изображена подложка из фиброина шелка, полученная методом полива водного раствора фиброина шелка на поверхность полированного тефлона.

На Фиг. 2 изображена подложка из фиброина шелка, покрытая раствором коллагена, иммобилизованная на поверхности пластика.

На Фиг. 3 изображена подложка из фиброина шелка, полученная методом полива раствора фиброина шелка в муравьиной кислоте на поверхность полированного тефлона.

Способ получения подложки реализуется следующим образом.

В одном из вариантов подложка для анализа образцов методом сканирующей зондовой нанотомографии представляет собой пленку из фиброина шелка тутового шелкопряда Bombyx mori толщиной 1-100 мкм, содержащую 5-100% фиброина шелка по массе (фиг. 1).

Кроме этого существует вариант, в котором подложка, выполненная в виде пленки, дополнительно содержит, по меньшей мере, одно вещество, способствующее адгезии и пролиферации клеток млекопитающего. Для этого в состав раствора для получения пленки вводят это вещество (например, фибронектин, желатин, эластин), либо покрывают пленку растворами этих веществ (фиг. 2). Для этого отделенную подложку помещают в пробирку с раствором этого вещества (например, фибронектина, желатина, коллагена) и инкубируют в течение указанного времени (например, для раствора фибронектина с концентрацией 10 мкг/мл время инкубации составляет 12 часов, для раствора желатина с концентрацией 10 мг/мл время инкубации составляет 2 часа, для раствора коллагена с концентрацией 20 мг/мл время инкубации составляет 4 часа), либо наносят раствор этого вещества на поверхность подложки и инкубируют в течение указанного времени.

Кроме этого существует вариант, в котором для получения пленки водный раствор фиброина шелка лиофильно высушивают, после чего растворяют сухой лиофилизированный фиброин шелка в муравьиной кислоте до концентрации 1-100 мг/мл и полученный раствор наносят на поверхность для высушивания, и после полного высыхания раствора отделяют от поверхности для высушивания пленку из фиброина шелка (фиг. 3). Для этого используют инструмент, например, шпатель или скальпель.

Кроме этого существует вариант, в котором в состав раствора фиброина шелка перед нанесением на поверхность для высушивания вводят, по меньшей мере, одно вещество, способствующее адгезии и пролиферации клеток млекопитающего, в количестве до 95% по массе. Для этого в раствор фиброина шелка вносят это вещество в сухом виде или в виде раствора и перемешивают, например, с помощью автоматической пипетки или магнитной мешалки.

Кроме этого существует вариант, в котором подложку из фиброина шелка перед отделением или после отделения от поверхности для высушивания инкубируют в метаноле или этаноле в течение 10-60 минут. При этом молекулы фиброина шелка в составе пленки переходят в состояние β-слоев, что приводит к дополнительному увеличению механической прочности подложки и уменьшению ее скорости деградации. Для этого на подложку наносят метанол или этанол так, чтобы он покрывал подложку, или вносят отделенную подложку в пробирку с метанолом или этанолом.

Кроме этого существует вариант, в котором подложку из фиброина шелка получают на поверхности посуды для культивирования клеток. Для этого раствор фиброина шелка наносят на поверхность посуды для культивирования клеток и высушивают при комнатной температуре (фиг. 2).

Кроме этого существует вариант, в котором подложку из фиброина шелка на поверхности посуды для культивирования клеток инкубируют в метаноле или этаноле в течение 10-60 минут. При этом молекулы фиброина шелка в составе пленки переходит в состояние β-слоев, что приводит к дополнительному увеличению механической прочности подложки и уменьшению ее скорости деградации. Для этого в посуду для культивирования клеток вносят метанол или этанол так, чтобы он покрывал подложку.

Предлагаемый способ получения подложки из фиброина шелка для исследования биологического образца осуществляется следующим образом.

Пример 1.

В данном примере фиброин шелка для изготовления подложки выделяли из шелковых нитей 4-0 (Моснитки, Россия). Для этого взвешивали 1 г нитей шелка, разрезали нити на фрагменты по 0,5 см. Кипятили на водяной бане в течение 40 минут в растворе с добавлением двууглекислого натрия для очистки нитей от серицина и других примесей. Затем промывали 3600 мл дистиллированной воды. Кипятили 3 раза по 30 минут в бидистиллированной воде, промывая после каждого кипячения дистиллированной водой. После чего высушивали в сушильном шкафу. Для получения водного раствора фиброина в 9,3 М водный раствор бромида лития вносили навеску фиброина массой 150 мг/мл. Нагревали на кипящей водяной бане в течение 7 часов. После этого проводили диализ полученного раствора против бидистиллированной воды. Полученный диализный раствор замораживали при -80°С, а затем подвергали лиофилизации до полного удаления воды. Полученный лиофилизированный фиброин шелка растворяли в муравьиной кислоте из расчета 1 мг/мл при нагревании до 40°С на водяной бане в течение 10 минут. Полученный раствор центрифугировали 5 минут при 12100 g. Для изготовления подложки полученный раствор вносили в лунки 48-луночного планшета из расчета 400 мкл на лунку и высушивали в течение двух суток при комнатной температуре. Затем в лунки вносили этанол и инкубировали в течение 10 минут. Толщина полученной подложки составляла 1 мкм. В данном примере полученную подложку на планшете использовали для получения образца клеток линии 3Т3 для сканирующей зондовой нанотомографии. Для этого клетки линии 3Т3 культивировали в лунках планшета на подложках в течение 2-х суток в термостате при температуре 37°С и 5% углекислого газа, а затем производили заливку образца в полимерную среду (эпоксидную смолу) следующим образом. Из лунок планшета отбирали среду инкубации и производили две отмывки стерильным натрий-фосфатным буфером (рН=7,4), после чего вносили 2,5% раствор глутарового альдегида в натрий-фосфатном буфере (рН=7,4) и инкубировали в течение 2 часов в темноте при 4°С и двукратно отмывали натрий-фосфатным буфером (рН=7,4). Затем производили дегидратацию образца проводкой по спиртам с увеличивающейся концентрацией по схеме:

а) р-р этанола 30% - 10 мин;

б) р-р этанола 50% - 10 мин;

в) р-р этанола 70% - 10 мин;

г) р-р этанола 80% - 10 мин;

д) р-р этанола 96% - 10 мин.

Образец отмывали трехкратно пропиленоксидом по 10 минут, а затем инкубировали в смеси пропиленоксида и эпоксидной смолы в соотношении 1:1 в течение 30 минут, после чего образец переносили в смесь пропиленоксида и эпоксидной смолы в соотношении 1:2 и инкубировали в течение 30 минут. Для заливки образца использовалась эпоксидная среда (Ероху Embedding Medium kit, Sigma-Aldrich, Cat. №45359-1EA-F). Образец заключали в эпоксидную среду, инкубировали в термостате при 45°С в течение 24 часов, после чего продолжали инкубацию в течение 72 часов при температуре 60°С. Затем образец отделяли от лунки планшета с помощью скальпеля.

Пример 2.

В данном примере фиброин шелка для изготовления подложки выделяли из шелковых нитей 4-0 (Моснитки, Россия). Для этого взвешивали 1 г нитей шелка, разрезали нити на фрагменты по 0,5 см. Кипятили на водяной бане в течение 40 минут в растворе с добавлением двууглекислого натрия для очистки нитей от серицина и других примесей. Затем промывали 3600 мл дистиллированной воды. Кипятили 3 раза по 30 минут в бидистиллированной воде, промывая после каждого кипячения дистиллированной водой. После чего высушивали в сушильном шкафу. Для получения водного раствора фиброина в 9,3 М водный раствор бромида лития вносили навеску фиброина массой 150 мг/мл. Нагревали на кипящей водяной бане в течение 7 часов. После этого проводили диализ полученного раствора против бидистиллированной воды. Полученный диализный раствор замораживали при -80°С, а затем подвергали лиофилизации до полного удаления воды. Полученный лиофилизированный фиброин шелка растворяли в муравьиной кислоте из расчета 100 мг/мл при нагревании до 40°С на водяной бане в течение 60 минут. Полученный раствор центрифугировали 5 минут при 12100 g. Для изготовления подложки полученный раствор наносили на поверхность полированного тефлона (в данном примере для получения подложки площадью 1 см2 наносили 600 мкл раствора) и высушивали в течение двух суток при комнатной температуре. Полученную подложку из фиброина шелка отделяли от поверхности тефлона с помощью скальпеля, предварительно инкубировав в этаноле в течение 60 минут. Толщина полученной подложки составляла 100 мкм (фиг. 3). В данном примере полученную подложку помещали в чашку Петри и использовали для получения образца клеток линии 3Т3 для сканирующей зондовой нанотомографии. Для этого клетки линии 3Т3 культивировали в чашке Петри с подложкой из фиброина шелка в течение 2-х суток в термостате при температуре 37°С и 5% углекислого газа, а затем производили заливку подложки с клетками линии 3Т3 в полимерную среду (эпоксидную смолу) следующим образом. Подложку переносили в пробирку со стерильным натрий-фосфатным буфером (рН=7,4) и производили две отмывки стерильным натрий-фосфатным буфером (рН=7,4), после чего вносили 2,5% раствор глутарового альдегида в натрий-фосфатном буфере (рН=7,4) и инкубировали в течение 2 часов в темноте при 4°С и двукратно отмывали натрий-фосфатным буфером (рН=7,4). Затем производили дегидратацию образца проводкой по спиртам с увеличивающейся концентрацией по схеме:

а) р-р этанола 30% - 10 мин;

б) р-р этанола 50% - 10 мин;

в) р-р этанола 70% - 10 мин;

г) р-р этанола 80% - 10 мин;

д) р-р этанола 96% - 10 мин.

Образец отмывали трехкратно пропиленоксидом по 10 минут, а затем инкубировали в смеси пропиленоксида и эпоксидной смолы в соотношении 1:1 в течение 30 минут, после чего образец переносили в смесь пропиленоксида и эпоксидной смолы в соотношении 1:2 и инкубировали в течение 30 минут. Для заливки образца использовалась эпоксидная среда (Epoxy Embedding Medium kit, Sigma-Aldrich, Cat. №45359-1EA-F). Образец заключали в эпоксидную среду в пластиковой ячейке для заливки, инкубировали в термостате при 45°С в течение 24 часов, после чего продолжали инкубацию в течение 72 часов при температуре 60°С.

Таким образом, предложенный способ позволяет получить универсальную, прозрачную, механически прочную, биосовместимую подложку для исследования биологического образца методом СЗНТ.

1. Подложка для исследования биологического образца методом сканирующей зондовой нанотомографии в виде пленки толщиной 1-100 мкм, содержащая 5-100% фиброина шелка тутового шелкопряда Bombyx mori по массе.

2. Подложка по п. 1, содержащая дополнительно по меньшей мере одно вещество, способствующее адгезии и пролиферации клеток млекопитающего.

3. Способ получения подложки по п. 1, в котором водный раствор фиброина шелка тутового шелкопряда Bombyx mori лиофильно высушивают, после чего растворяют сухой лиофилизированный фиброин шелка в муравьиной кислоте до концентрации 1-100 мг/мл раствора и полученный раствор наносят на поверхность для высушивания, а после полного высыхания раствора отделяют от поверхности для высушивания пленку из фиброина шелка.

4. Способ получения подложки по п. 3, характеризующийся тем, что пленку из фиброина шелка обрабатывают раствором по меньшей мере одного вещества, способствующего адгезии и пролиферации клеток млекопитающего, путем инкубации в растворе этого вещества.

5. Способ получения подложки по п. 3, характеризующийся тем, что в состав раствора фиброина шелка перед нанесением на поверхность для высушивания вводят по меньшей мере одно вещество, способствующее адгезии и пролиферации клеток млекопитающего, в количестве до 95% по массе.

6. Способ получения подложки по п. 3, в котором подложку из фиброина шелка перед отделением или после отделения от поверхности для высушивания инкубируют в метаноле или этаноле в течение 10-60 минут.

7. Способ получения подложки по п. 3, в котором подложку из фиброина шелка получают на поверхности посуды для культивирования клеток.

8. Способ получения подложки по п. 7, в котором подложку из фиброина шелка на поверхности посуды для культивирования клеток инкубируют в метаноле или этаноле в течение 10-60 минут.



 

Похожие патенты:

Изобретение относится к области сканирующей зондовой микроскопии и может быть использовано при исследовании микрорельефа отражающих поверхностей, например, в кристаллографии, метрологии, при изучении высокомолекулярных соединений, а также для локальных исследований микрообъектов в виде наноструктурированных материалов и биологических объектов.

Изобретение относится к области медицины, в частности к онкологии. Предложен способ дифференциальной диагностики фиброаденомы (ФА) и рака молочной железы (РМЖ).

Устройство для изменения распределения энергии в плоскости раскрыва конического излучателя системы радиовидения миллиметрового диапазона относится к антенной технике и может быть использовано для изменения распределения энергии в растворах антенн, в частности конических излучателей систем радиовидения миллиметрового диапазона.

Использование: для диагностирования наноразмерных структур. Сущность изобретения заключается в том, что сканирующий зонд содержит кантилевер, соединенный с зондирующей иглой, продетой и жестко закрепленной в одной из сквозных нанопор стеклянной сферы большего диаметра с апконвертирующими наночастицами и квантовыми точками структуры ядро-оболочка, а вершина зондирующей иглы, выходящая из стеклянной сферы большего диаметра, подвижно соединена с помощью двух вложенных углеродных нанотрубок с отделяемой и автономно функционирующей стеклянной сферой малого диаметра со сквозными нанопорами с конусообразными входами, заполненными квантовыми точками, апконвертирующими наночастицами и магнитными наночастицами структуры ядро-оболочка.

Использование: для диагностирования наноразмерных структур. Сущность изобретения заключается в том, что сканирующий зонд атомно-силового микроскопа с отделяемым телеуправляемым нанокомпозитным излучающим элементом, легированным квантовыми точками, апконвертирующими и магнитными наночастицами структуры ядро-оболочка, включает двухслойную углеродную нанотрубку, магнитопрозрачные кантилевер с электропроводящей зондирующей иглой, продетой в углеродную нанотрубку малого диаметра, которая вложена в нанотрубку большего диаметра, наружная поверхность которой закреплена в магнитопрозрачной стеклянной сфере, содержащей сквозные нанометровые поры малого и большего диаметра, из которых нанопоры большого диаметра заполнены магнитными наночастицами структуры ядро-оболочка с одинаковым направлением ориентации полюсов, квантовые точки структуры ядро-оболочка, с внешней стороны покрытые защитным оптомагнитопрозрачным полимерным слоем, синхронизированную с перемещаемой электропроводящей зондирующей иглой С-образную синхронно-центрирующую скобу, на которой закреплены и направлены на центр магнитопрозрачной стеклянной сферы первый и второй внешние источники магнитного поля в виде первой и второй плоских микрокатушек, размещенных на оптомагнитопрозрачных подложках и соединенных с выходами первого и второго ЦАП, также содержит апконвертирующие наночастицы структуры ядро-оболочка, диаметр которых меньше диаметра магнитных наночастиц структуры ядро-оболочка, но больше диаметра квантовых точек структуры ядро-оболочка, первый и второй источники возбуждения апконвертирующих наночастиц, закрепленные на противоположных сторонах С-образной синхронно-центрирующей скобы и оптические оси которых направлены на центр магнитопрозрачной стеклянной сферы, малые сквозные поры которой выполнены с конусообразными входами, по центру которых размещены апконвертирующие наночастицы структуры ядро-оболочка, вокруг сферической поверхности полушария каждой из которых размещены квантовые точки структуры ядро-оболочка без выхода их оболочек за сферическую поверхность магнитопрозрачной стеклянной сферы.

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии для диагностирования наноразмерных структур. Магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных нанотрубок с магнитопрозрачной отделяемой и автономно функционирующей стеклянной сферой со сквозными нанометровыми порами, заполненными апконвертирующими наночастицами и магнитными наночастицами структуры ядро-оболочка, постоянно находящимися в управляющих электромагнитных полях.

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сканирующий зонд содержит кантилевер, соединенный с зондирующей иглой, которая продета и жестко закреплена в одной из сквозных нанопор стеклянной сферы большего диаметра с апконвертирующими наночастицами структуры ядро-оболочка, а вершина зондирующей иглы, выходящая из стеклянной сферы большего диаметра, подвижно соединена с помощью двух вложенных углеродных нанотрубок с отделяемой и автономно функционирующей стеклянной сферой малого диаметра со сквозными нанопорами, заполненными апконвертирующими наночастицами и магнитными наночастицами.

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сканирующий зонд содержит кантилевер, соединенный с зондирующей иглой, которая продета и жестко закреплена в одной из сквозных нанопор стеклянной сферы большего диаметра с апконвертирующими наночастицами структуры ядро-оболочка, а вершина зондирующей иглы, выходящая из стеклянной сферы большего диаметра, подвижно соединена с помощью двух вложенных углеродных нанотрубок с отделяемой и автономно функционирующей полимерной сферой малого диаметра со сквозными нанопорами, заполненными апконвертирующими наночастицами и магнитными наночастицами.

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии для диагностирования наноразмерных структур. Магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных углеродных нанотрубок с магнитопрозрачной отделяемой и автономно функционирующей стеклянной сферой со сквозными нанометровыми порами, заполненными апконвертирующими наночастицами и магнитными наночастицами с одинаковой ориентацией полюсов структуры ядро-оболочка, постоянно находящимися в управляющих электромагнитных полях.

Система (100) с зондом Кельвина для анализа исследуемого образца (134), содержащая привод (102), управляемый и приводимый в действие с помощью средства (103) управления приводом/источника питания, для вращения элемента (106, 120) вокруг оси вращения; соединенную с приводом (102) головку (120) с зондом Кельвина, содержащую зонд Кельвина (122) и имеющую на одном конце внешнюю поверхность (124) зонда Кельвина; отличающаяся тем, что внешняя поверхность зонда Кельвина находится на боковой поверхности, по отношению к оси вращения, головки с зондом Кельвина.

Изобретение относится к области микроскопии структурированного освещения (SIM). Технический результат заключается в уменьшении числа изображений и размеров, необходимых, чтобы разрешать флуоресцентные образцы с использованием SIM с помощью структурированных особым образом проточных ячеек, и оптимизацию перемещения светового пучка относительно флуоресцентных образцов для достижения реализации SIM, которая может использоваться в методах линейного сканирования.
Наверх