Способ активации проращивания семян рапса

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает использование светодиодного освещения спектров синего, зеленого и красного света, отличающийся тем, что семена обрабатывают водным золем 0,01% гидротермального нанокремнезема в течение 120 минут с последующим проращиванием семян на подложках из минеральной ваты в виде пластин с поливом дистиллированной водой по мере подсыхания подложки в течение 7 суток при непрерывном освещении светодиодами синего света с длиной волны 440 нм или светодиодами зеленого света с длиной волны 525 нм, или светодиодами красного света с длиной волны 660 нм. Причем для всех источников характерна низкая интенсивность генерируемых фотонов в диапазоне 1,68 мкмоль/м2⋅с до 6,90 мкмоль/ м2⋅с. Способ позволяет расширить возможность использования светодиодного освещения в варианте монохроматических спектров синего, зеленого и красного света в комбинации с обработкой перед проращиванием семян наночастицами кремнезема гидротермального происхождения для повышения энергии прорастания и всхожести семян рапса, урожайности его ростков в фазе семисуточного проращивания. 2 табл., 1 пр.

 

Изобретение относится к области сельского хозяйства, в частности, в растениеводстве, может найти применение для повышения всхожести семян рапса, в селекции с использованием агробиотехносистем с искусственным освещением и расширении области применения гидротермального нанокремнезема в технологиях получения пророщенного рапса для здорового питания.

В последние 20 лет в практику сельскохозяйственной науки и биотехнологии активно входят агробиотехносистемы различных конструкций и модификаций, предназначенные для исследования процессов выращивания растений в контролируемых условиях. В России эти технические системы наиболее известны под термином фитотроны. Последние годы появились и модификации фитотронов для решения вопросов выращивания растений для космического питания и медицины (Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., Яковлева О.С., Знаменский А.И., Тараканов И.Г., Радченко С.Г., Лапач С.Н.. Обоснование оптимальных режимов освещения растений для космической оранжереи «Витацикл-Т» // Авиакосм. и экол. мед. - 2016. - Т. 50, № 4. - С. 28-36) а также класс фитотронов - синерготроны с программно-управляемыми параметрами, включая и режимы освещения светодиодными источниками света (Жизненный цикл и экология растений: регуляция и управление средой обитания в агробиотехносистемах. Сборник научных трудов. Выпуск 1 / Под редакцией проф. В.Н. Зеленкова - М.: Техносфера, 2018. - 208 с. ISBN 978-5-94836-543-5).

Аналогом предлагаемого решения является работа по изучению досвечивания горчицы салатной в фазе технической зрелости растений светодиодными светильниками с красным и синим полидисперсным спектром (Зеленков В.Н., Кособрюхов А.А., Лапин А.А., Латушкин В.В. Продуктивность и антиоксидантная активность горчицы салатной при облучении красным и синим светом в замкнутой системе фитотрона класса синерготрон ИСР-1.1 / Жизненный цикл и экология растений: регуляция и управление средой обитания в агробиотехнотехносистемах. Сборник научных трудов. Вып. 1 / Под редакцией проф. В.Н. Зеленкова - М.: Техносфера, 2018 - С. 144-154. ISBN 978-5-94836-543-5, DOI: 10.22184/978-5-94836-543-5-142-152.

Однако, данный аналог рассматривает источник света в красной области излучения светодиодного светильника как полидисперсный фотонный источник широкой области красного излучения регулируемого светильника синерготрона модели 1.01 (разработка АНО Институт стратегий развития, г. Москва) и дает техническое решение вопросов интенсификации роста растений салатной культуры только в фазе технической зрелости.

Известно, что влияние света на этапе прорастания семян мало связано с интенсивностью фотосинтеза, т.к. фотосинтетический аппарат - листья растений, еще не сформированы.

Близким аналогом к предлагаемому решению является и исследование в ВНИИ лекарственных и ароматических растений при рассмотрении фактора освещения при проращивании семян лекарственных растений с длительным периодом покоя, что снижает эффективность их применения в лекарственном растениеводстве из-за низкой всхожести, как лабораторной, так и полевой. Авторы работы используют полные спектры излучателей красного и синего света при проращивании семян паслена и белладонны (Н.Ю. Свистунова, П.С. Савин. Влияние различных условий на всхожесть семян некоторых лекарственных растений после длительного хранения / Идеи Н.И. Вавилова в современном мире: тезисы докладов в IV Вавиловской международной конференции. - Санкт-Петербург, 20-24 ноября 2017 г. СПб.: ВИР, 2017, с. 149). Авторы применили спектры синего и красного освещения широкого диапазона и высокой энергетической составляющей генерируемых пучков фотонов. Наиболее эффективным для реализации проращивания семян лекарственных растений белладонны и паслена оказался вариант с красным освещением семян при проращивании. Однако авторы не указывают интенсивности освещения и точных длин волн красного и синего света, что является существенным для практической реализации способа в технологиях проращивания для других сельскохозяйственных культур. Это не позволяет применить приведенные данные авторов, например для масличных и технических культур, в частности для рапса.

В качестве прототипа, наиболее близкого к предлагаемому варианту способа опубликовано техническое решение, в котором используют полихроматический спектр высокоэнергетического режима для облучения семян синим, зеленым и красным светом (патент Кореи KR 102093373 В1 (Republic of Korea / Management Rural Development Administration, 25.03.2020).

В известном способе-прототипе авторы применяют спектры синего, зеленого и красного освещения широкого диапазона без оценки влияния различных его участков на растения и применяют высокую энергетическую составляющую генерируемых пучков фотонов более 100 мкМоль/м2 с. Однако, авторы не указывают интенсивности для длин волн синего, зеленого и красного спектров генерируемого освещения для растений, не применяют их альтернативно, что является существенным для практической реализации способа в технологиях проращивания семян различных сельскохозяйственных культур на свету. Это не позволяет применить приведенные данные авторов, например для масличной культуры рапса.

Технический результат - расширение возможностей использования светодиодного освещения в варианте монохроматических спектров синего, зеленого и красного света в комбинации с обработкой перед проращиванием семян наночастицами кремнезема гидротермального происхождения для повышения энергии прорастания и всхожести семян рапса, урожайности его ростков в фазе 7-ми суточного проращивания.

Техническое решение заявленного объекта заключается в том, что в отличие от прототипа, проводят предпосевную обработку семян рапса в приготовленном перед обработкой рабочем растворе водного золя гидротермального нанокремнезема с концентрацией наночастиц 0,01% в течение 120 минут с последующим посевом и проращиванием в стандартных условиях по температуре и увлажнении семян с применением в качестве источников света монохроматического непрерывного освещения светодиодами синего света с длиной волны 440 нм (СД СС) или светодиодами зеленого света с длиной волны 525 нм (СД ЗС), или светодиодами красного света с длиной волны 660 нм (СД КС), причем для всех источников характерна низкая интенсивность генерируемых фотонов в диапазоне 1,68 мкМоль/м2 с до 6,90 мкМоль/м2 с на уровне подложки с семенами.

Способ осуществляют следующим образом:

Пример. Для экспериментальной проверки способа в качестве сельскохозяйственной культуры использовали рапс, сорт Антарес (оригинатор сорта ВНИИ рапса, г. Липецк).

Для обработки семян рапса использовали гидротермальный нанокремнезем (ГНК), полученный ультрафильтрационным концентрированием и очисткой от примесей термальной природной воды Мутновского месторождения в ООО НПФ «Наносилика» (г. Петропавловск-Камчатский). Используемый в испытаниях исходный золь нанокремнезема характеризовался исходной концентрацией по кремнезему 5,0%, полидисперсностью составляющих его наночастиц с преобладанием размеров 10-20 нм. Исходный золь 5% ГНК разводили дистиллированной водой (из расчета 1 мл исходного раствора на 500 мл воды) для приготовления 0,01%-ной концентрации рабочего раствора гидротермального нанокремнезема для обработки семян. Обработку семян проводили, замачивая их в рабочем растворе в течение 120 минут.

Проращивание семян проводили согласно ГОСТ 12038-84 с изменениями, а именно: вместо фильтровальной бумаги использовали подложку из минеральной ваты в виде пластин 20*20 см (400 см2). Количество семян 160 шт., повторность трехкратная. Масса 1000 семян рапса сорта Антарес, использованных для посева, составляла 3,9 г. Полив проводили дистиллированной водой по мере подсыхания подложки. В качестве контроля использовали проращивание семян рапса в темноте, которые перед посевом предварительно выдерживали в дистиллированной воде в течение 120 минут, а в опытных вариантах проводили проращивание с использованием монохроматического освещения, генерируемого светодиодными источниками синего (СД СС), или зеленого (СД ЗС) или красного (СД КС) света с соответствующими им длинами волн 440 нм, 525 нм и 660 нм, причем для всех источников характерна низкая интенсивность генерируемых фотонов в 1,68 мкМоль/м2 с, 2,58 мкмоль/м2 с, 6,90 мкМоль/м2 с, соответственно, на уровне подложки с семенами.

На 3-й день определяли энергию прорастания, а на 7-й день определяли всхожесть семян в опытных и контрольном вариантах и измеряли высоту ростков, их урожайность в 3-х повторностях. Определяли среднее арифметическое по энергии проращивания, всхожести, высоты и урожайности ростков рапса.

Результаты испытаний реализации способа приведены в таблицах 1 и 2.

Применение предложенного способа с предварительной предпосевной обработкой семян рапса 0,01% водным золем гидротермального нанокремнезема в течение 120 минут и использованием светодиодных источников синего (СД СС), или зеленого (СД ЗС), или красного (СД КС) света с длинами волн 440 нм, 525 нм и 660 нм, соответственно и с характерной всем источникам низкой интенсивностью при проращивании семян 7 суток при таком непрерывном освещении, что позволяет повысить энергию прорастания на 4,2%, 11,6% и 5,6%, соответственно, а также увеличить всхожесть семян на 3,9%, 12,6% и 5,3%, соответственно (табл. 1).

Таблица 1 - Энергия прорастания (3-и сутки, %) и всхожесть (7-е сутки, %) семян рапса сорта Антарес для вариантов контроля и в предлагаемом способе

Вариант опыта Энергия, % Увеличение энергии, % Всхожесть, % Увеличение всхожести, %
Обработка семян дистиллированной водой и проращивание в темноте - контроль 88,2 - 88,8 -
Обработка семян водным раствором 0,01% ГНК, освещение СД СС (440 нм) 91,9 +4,2 92,2 +3,8
Обработка семян водным раствором 0,01% ГНК, освещение СД ЗС (525 нм) 98,4 +11,6 100,0 +12,6
Обработка семян водным раствором 0,01% ГНК, освещение СД КС (660 нм) 93,1 +5,6 93,5 +5,3

Применение предложенного способа с предварительной предпосевной обработкой семян рапса 0,01% водным золем гидротермального нанокремнезема в течение 120 минут и использованием светодиодных источников синего (СД СС), зеленого (СД ЗС) и красного (СД КС) света с длинами волн 440 нм, 525 нм и 660 нм, соответственно с низкой интенсивностью при проращивании семян 7 суток при таком непрерывном освещении позволяет повысить урожайность по росткам рапса на 4,7%, 15,4%, 3,8%, соответственно (табл. 2).

Применение вариантов способа СД СС (440 нм) и СД КС (660 нм) монохроматического освещения ведет к снижению высоты ростков пророщенных семян на 19,2% и 11,3%, соответственно.

В случае применения варианта освещения СД ЗС практически нет влияния на высоту ростков (изменение высоты на 2,0%). При этом наблюдается увеличение урожайности ростков пророщенных семян в вариантах СД СС, СД ЗС и СД КС на 4,7%, 15,4% и 3,8%, соответственно. Это говорит о более эффективном применении предложенного способа для сорта рапса Антарес в случае использования светодиодного освещения зеленого спектра длиной волны 525 нм по сравнению с вариантами СД СС и СД КС.

Однако, эти данные позволяют утверждать о возможности селекционного получения низкорослых биотипов рапса с увеличением их урожайности при воздействии при проращивании синего и красного света с длинами волн 440 нм и 660 нм и низкой интенсивности монохроматического излучения.

Таблица 2. Высота и урожайность ростков рапса сорта Антарес для вариантов контроля и предлагаемого способа

Вариант опыта Высота ростков, см Изменение высоты ростков относительно контроля, % Урожайность, г/ м2 Изменение урожайности относительно контроля, %
Обработка семян дистиллированной водой и проращивание в темноте - контроль 15,1 - 200,8 -
Обработка семян водным раствором 0,01% ГНК, освещение СД СС (440 нм) 12,2 -19,2 210,3 +4,7
Обработка семян водным раствором 0,01% ГНК, освещение СД ЗС (525 нм) 14,8 -2,0 231,8 +15,4
Обработка семян водным раствором 0,01% ГНК, освещение СД КС (660 нм) 13,4 -11,3 208,5 +3,8

Полученные данные позволяют заключить, что проведение проращивания семян рапса с предварительной предпосевной обработкой водным золем 0,01% гидротермального нанокремнезема в течение 120 минут с последующим проращиванием в варианте низкоэнергетического монохроматического освещения светодиодами синего спектра с длиной волны 440 нм, зеленого спектра с длиной волны 525 нм и красного спектра с длиной волны 660 гм, позволяет повысить энергию прорастания, всхожесть и урожайность.

Выявленные тенденции по снижению роста с увеличением урожайности для вариантов применения СД СС и СД КС может найти применение в селекционных работах, семеноводстве по отбору высокопродуктивных биотипов рапса, отзывчивых на избирательное действие монохроматическое светодиодное излучение и в технологиях получения пророщенных семян растений и микрозелени для здорового питания.

Способ активации проращивания семян рапса, включающий использование светодиодного освещения спектров синего, зеленого и красного света, отличающийся тем, что семена обрабатывают водным золем 0,01% гидротермального нанокремнезема в течение 120 минут с последующим проращиванием семян на подложках из минеральной ваты в виде пластин с поливом дистиллированной водой по мере подсыхания подложки в течение 7 суток при непрерывном освещении светодиодами синего света с длиной волны 440 нм или светодиодами зеленого света с длиной волны 525 нм, или светодиодами красного света с длиной волны 660 нм, причем для всех источников характерна низкая интенсивность генерируемых фотонов в диапазоне от 1,68 мкмоль/м2⋅с до 6,90 мкмоль/ м2⋅с.



 

Похожие патенты:
Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает использование освещения в области синего и красного света.

Изобретение относится к области светотехники и касается спектрально-селективного источника излучения. Источник излучения имеет полый корпус, выполненный в виде усеченного конуса с окном-линзой в малом основании для вывода излучения.

Группа изобретений относится к осветительным системам транспортного средства. Осветительная система для узла рулевого колеса транспортного средства содержит источник света и первую фотолюминесцентную структуру.

Изобретение относится к светоизлучающему устройству высокой яркости. Техническим результатом является повышение эффективности отвода тепла от светоизлучающего устройства высокой яркости.

Группа изобретений относится к светодиодным отображающим и осветительным устройствам, выполненным в виде гибкой тонкопленочной конструкции. Экранное устройство содержит по меньшей мере один модуль.

Изобретение относится к области светотехники и может быть использовано для удлиненных трубчатых осветительных устройств. Техническим результатом является расширение арсенала технических средств.

Группа изобретений относится к системам освещения транспортного средства. Моторный отсек с подсветкой для транспортного средства содержит вырабатывающий свет узел, первую и вторую люминесцентные части и контроллер для управления состоянием ввода в действие вырабатывающего свет узла в ответ на связанное с транспортным средством состояние.

Изобретение относится к области светотехники. Техническим результатом является повышение степени равномерности распределения света и упрощение изготовления.

Изобретение относится к области осветительной техники и касается осветительного модуля. Осветительный модуль содержит первый светоизлучающий элемент, второй источник света и элемент отражения.

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности антенны и упрощение ее установки.

Изобретение относится к утилизации отходов металлургии и может быть использовано при производстве чёрных и цветных металлов и сплавов, получении металлокомпозитов, покрытий и охлаждающих агентов.
Наверх