Способ определения расхода жидкости центробежного насоса с асинхронным электроприводом

Изобретение относится к способу измерения расхода перекачиваемой жидкости асинхронным электроприводом центробежных насосов. Измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, определяют модуль вектора напряжения статора, определяют модуль вектора тока статора, мгновенные величины токов и напряжений статора асинхронного электродвигателя; модуль вектора напряжения статора, модуль вектора тока статора подают на вход искусственной нейронной сети, с помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными, определяют промежуточные значения по формуле расхода жидкости, фильтруют данные, тем самым определяя мгновенную величину объемного расхода жидкости центробежного насоса с асинхронным электроприводом. Технический результат - расширение арсенала средств аналогичного назначения.

 

Изобретение относится к электротехнике и может быть использовано при учёте и контроле потребления воды и других текучих сред электроприводов центробежных насосов.

Известен способ определения расхода тепла в тепловой сети, содержащей центробежные электронасосы (патент RU 2022235, МПК G01F9/00, опубл. 30.10.1994). Сущность изобретения: для повышения точности и упрощения измерения расхода тепла измеряют одновременно активную мощность, потребляемую электродвигателем привода насоса, давление на нагнетании и всасе насоса, температуру теплоносителя на подающем и обратном трубопроводах тепловой сети, вычисляют мощность, действующую на валу насоса, и давление на нагнетании, развиваемое собственно насосом, определяют расчетный коэффициент подачи путем давления на мощность и вычитания результата из постоянного числа, равного отношению давления к мощности при нулевой подаче, строят характеристику, отражающую зависимость расчетного коэффициента от подачи, и по ней определяют производительность насоса и умножают на разность температур в подающем и обратном трубопроводах тепловой сети.

Наиболее близким к заявляемому является способ определения расхода жидкости центробежного насоса с асинхронным электроприводом (патент RU 2610909, МПК G01F 9/00, опубл. 17.02.2017), где измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, преобразуют трехфазные значения токов и напряжений в двухфазные составляющие токов и напряжений, определяют оцененные составляющие тока статора, вычисляют разницу между оцененными значениями составляющих тока статора и текущими значениями составляющих стока статора, определяют оцененные значения составляющих потокосцеплений ротора, по оцененным значениям составляющих тока статора и потокосцепления ротора определяют электромагнитный момент асинхронного двигателя, с помощью оцененных значений составляющих потокосцепления ротора и разниц между оцененными значениями составляющих тока статора и текущими значениями составляющих тока статора, определяют момент нагрузки центробежного насоса, с помощью значений электромагнитного момента асинхронного двигателя и момента нагрузки центробежного насоса определяют текущую угловую скорость вращения рабочего колеса центробежного насоса. Определяют гидравлическую мощность насоса. По значениям гидравлической мощности и скорости вращения ротора определяют действительный расход насосной установки.

Недостатками известных способов является то, что для его осуществления требуются технические данные двигателя, насоса и перекачиваемой жидкости.

Задачей изобретения является расширение арсенала средств аналогичного назначения.

Данный технический результат достигается тем, что измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, определяют модуль вектора напряжения статора, определяют модуль вектора тока статора по формулам [Соколовский Г. Г. Электроприводы переменного тока с частотным регулированием: учебник для студ. высш. учеб. заведений. – 2-е изд., испр. – М.: Издательский центр «Академия», 2007 г. – 272 с.]:

,

,

где – модуль вектора напряжения статора,

– модуль вектора тока статора,

, , – фазные напряжения статора

, , – фазные токи статора.

С помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными определяют промежуточные значения расхода жидкости по формуле [Хайкин С. Нейронные сети: полный курс, 2-е издание. – М.: Издательский дом «Вильямс», 2006 г.]:

,

где

– промежуточные значения расхода жидкости

– входные сигналы искусственной нейронной сети, равные соответственно токам статора (, , ), модулю тока статора , напряжениям статора (, , ), модулю напряжения статора .

m – количество нейронов во входном слое (m=8),

n – количество нейронов в скрытом слое (n=50).

w1ij – синаптический вес j-го входа i-го нейрона скрытого слоя,

b1i0 – сдвиг i-го нейрона скрытого слоя,

w2i – синаптический вес i-го входа нейрона выходного слоя,

b20 – сдвиг нейрона выходного слоя.

Фильтруют данные, определяют мгновенную величину объемного расхода жидкости центробежного насоса с асинхронным электроприводом, по формуле

,

где p – оператор дифференцирования, с–1

Tf –– постоянная времени фильтра, с,

Для определения мгновенной величины объемного расхода жидкости центробежного насоса с асинхронным электроприводом использовали трехслойную рекуррентную искусственную нейронную сеть, которая состоит из входного слоя, скрытого слоя и выходного слоя. Количество нейронов во входном слое равно 8, в скрытом слое - 50, в выходном слое - 1. Функция активации всех нейронов скрытого слоя - гиперболический тангенс, выходного слоя - линейная. Нейроны входного слоя передают входные сигналы на скрытый слой, не преобразуя их. Для уменьшения шумов нейронной сети используют фильтр – апериодическое звено первого порядка.

Перед началом работы обучают искусственную нейронную сеть на выборке, сформированной по опытным данным работы электропривода центробежного насоса с частотным регулированием и дроссельным регулированием подачи насоса. Для обучения искусственной нейронной сети использовали байесовскую регуляризацию.

Процесс обучения искусственной нейронной сети выглядит следующим образом: все коэффициенты связей между нейронами инициализируются случайными числами, затем сети предъявляется обучающая выборка, и с помощью алгоритма обучения коэффициенты синаптических связей подстраиваются при выполнении циклической процедуры так, чтобы расхождение между обучающей выборкой и реакцией сети на соответствующие входные данные было минимальным.

В проведенных экспериментах на насосе К8-18 с асинхронным двигателем АД80М2 погрешность определения расхода по сравнению с эталонной моделью в установившемся режиме не превышает 5%.

Способ определения количества текучей среды, перекачиваемой насосом, заключающийся в том, что проводят измерение мгновенных величин токов и напряжений статора асинхронного двигателя, отличающийся тем, что определяют модуль вектора напряжения статора, определяют модуль вектора тока статора, мгновенные величины токов и напряжений статора асинхронного электродвигателя; модуль вектора напряжения статора, модуль вектора тока статора подают на вход искусственной нейронной сети, с помощью искусственной нейронной сети, предварительно обученной по опытным данным работы центробежного насоса с асинхронным электроприводом при различных входных воздействиях как со стороны частоты и амплитуды питающего напряжения, так и со стороны гидравлического сопротивления, используя выявленные искусственной нейронной сетью при обучении зависимости между входными и выходными данными, определяют промежуточные значения по формуле расхода жидкости, фильтруют данные, тем самым определяя мгновенную величину объемного расхода жидкости центробежного насоса с асинхронным электроприводом.



 

Похожие патенты:

Изобретение относится к счетчикам текучей среды с конфигурацией формирования потока и датчиком расхода и предназначен для измерения расхода протекающей через его внутреннюю полость рабочей среды (газов, жидкостей).

Предоставляются устройство и способ для создания цифровых последовательных частотных выходных сигналов в расходомере Кориолиса. Способ генерирования частотного выходного сигнала на микроконтроллере содержит: инициализацию входного тактового сигнала, имеющего предварительно заданный период; вычисление параметра на основании предварительно заданного периода; вычисление желаемой частоты на основании параметра и предварительно заданного масштабирования расход-частота; вычисление множества дробных импульсов, каждый дробный импульс из множества дробных импульсов вычисляется на основании желаемой частоты, предварительно заданного периода входного тактового сигнала и значения предыдущего дробного импульса; и вывод желаемой частоты посредством переключения выходного состояния, когда вычисленный дробный импульс больше или равен половине периода выходного импульса.

Изобретение относится к измерительной технике и может быть использовано для определения неучтенного объема питьевой, технической и сточной воды (далее - воды) в системах водопотребления и водоотведения при возникновении нештатных ситуаций (НС) исправных, поверенных средств измерений (СИ).

Изобретение относится к приборостроению, в частности к разработке приборов измерения расхода. .

Изобретение относится к контрольно-измерительной технике и может быть использовано при учете и контроле потребления воды и других текучих сред в различных отраслях промышленности, преимущественное на предприятиях, использующих воду для выпуска продукции (имеющих собственные водозаборы), например в текстильной, целлюлозо-бумажной, металлургической промышленности, теплоэнергетике.

Изобретение относится к измерительному приборостроению, в частности, к устройствам для измерения расхода жидкостей и газов с помощью тахометрических датчиков расхода, имеющих нелинейную зависимость частоты от расхода.

Изобретение относится к гидравлическому оборудованию и позволяет упростить конструкцию устройства. .
Наверх