Паропаровая энергетическая установка



Паропаровая энергетическая установка
Паропаровая энергетическая установка
F24V30/00 - Отопление; вентиляция; печи и плиты (тепловая защита растений в садах или лесах A01G 13/06; хлебопекарные печи и устройства A21B; устройства для варки вообще, за исключением кухонных плит A47J; ковка B21J, B21K; отопительные и вентиляционные устройства для транспортных средств, см. соответствующие подклассы классов B60-B64; устройства для зажигания топлива вообще F23; сушка F26B; промышленные печи вообще F27; электронагревательные элементы и устройства H05B)

Владельцы патента RU 2743868:

Общество с ограниченной ответственностью "Симонов и партнеры" (RU)

Изобретение относится к области теплотехники и предназначено для увеличения экономичности паротурбинных блоков за счёт перехода к принципиально новой тепловой схеме. Раскрыта паропаровая энергетическая установка, которая состоит из двух блоков, основного энергетического паротурбинного блока I, работающего при стандартных сверхкритических параметрах пара, и присоединенного к нему через внешний пароперегреватель (22) дополнительного паротурбинного блока II, работающего при суперсверхкритических начальных параметрах пара. Основной блок содержит энергетический котел (1), а дополнительный блок содержит котел-утилизатор (23). Образующийся при использовании во внешнем пароперегревателе (22) теплоты сгорания топлива перегретый пар используется далее для выработки мощности в цилиндре низкого давления (14) основного энергетического паротурбинного блока I. Техническим результатом является расширение диапазона применимых начальных температур и давления пара с одновременным повышением экономичности энергетической установки (КПД установки увеличивается до 50-57%). 9 з.п. ф-лы, 1 ил., 2 табл.

 

Изобретение относится к области теплотехники и предназначено для увеличения экономичности паротурбинных блоков за счёт перехода к принципиально новой тепловой схеме.

УРОВЕНЬ ТЕХНИКИ

В настоящее время все энергетические паротурбинные установки работают по стандартной тепловой схеме, осуществляющей цикл Ренкина (см., например, А.В. Щегляев, Паровые турбины, Энергоатомиздат, 1993).

Начальная температура пара в паротурбинных установках (ПТУ) находится на уровне 550-580°С (для лучших отечественных турбин паровых). КПД паротурбинных энергоблоков составляет порядка 45%. За рубежом уже освоен уровень температур, равный 650°С, и в стадии разработок находятся турбины, рассчитанные на работу при начальной температуре пара 700°С. А в парогазовых установках (ПГУ) начальная температура достигает 1400-1700°С. (КПД ПГУ составляет 58%-60%). Главная причина столь большой разницы в экономичности сравниваемых энергетических установок состоит в разнице начальных температур и давлений теплоносителей в сравниваемых установках. Для корректности сравнения цикла Ренкина (ПТУ) с циклами ПГУ необходимо это сравнение производить при одинаковых начальных температурах теплоносителей. Однако при использовании чисто конденсационного цикла Ренкина провести такое сравнение нельзя, так как в этом цикле существует некоторый предельный уровень начальных температур, зависящий от начального давления пара, КПД турбины и давления в конденсаторе, превышение которого приводит к выходу из последней ступени конденсационной турбины перегретого пара с повышением его температуры, почти пропорционально повышению начальной температуры пара, без совершения полезной работы.

Однако экономичность газовых турбин, как и паротурбинных блоков, работающих с противодавлением без конденсации рабочей среды, непрерывно растет с повышением начальной температуры этих сред. Их КПД оказывается ниже КПД конденсационных ПТУ так как температуры теплоносителей, покидающих указанные установки, оказывается весьма высокими. Соответственно, в этом случае единственным способом увеличения экономичности является утилизация теплоты сред, покидающих паровые или газовые турбины. Именно такая утилизация и происходит в газовых турбинах при использовании теплоты, отработавших высокотемпературных газов для генерации пара в котлах утилизаторах утилизационных паротурбинных блоков.

Так, например, из уровня техники известна энергетическая парогазовая установка с одновременным сжиганием твердого и газообразного топлива (RU 2 248 452 C2, опубликовано 20.03.2005), содержащая паротурбинный блок с работающим на твердом топливе паровым котлом и паровой турбиной и газотурбинный блок с газовой турбиной, использующей в качестве рабочего тела нагретый сжатый воздух, поверхностный подогреватель сжатого воздуха продуктами сгорания твердого топлива и камеру сгорания газообразного топлива для дополнительного контактного подогрева сжатого воздуха. Поверхностный подогреватель сжатого воздуха установлен в высокотемпературной части конвективного газохода парового котла. Газотурбинный блок дополнительно содержит регенератор тепла отработавшего в газовой турбине рабочего тела, соединенный по холодной стороне воздухопроводами с выходом компрессора и входом поверхностного подогревателя сжатого воздуха. Достигаемым результатом изобретения является обеспечение возможности работы ПГУ со сжиганием твердого топлива при более высокой экономичности.

Также, известны разработки в области повышения мощности двухконтурных АЭС.

Так, известен (RU 2 707 182 C2, опубликовано 25.11.2019) способ повышения мощности двухконтурной АЭС за счет комбинирования с водородным циклом, который осуществляется за счет того, что питательная вода после тракта охлаждения продуктов сгорания водорода в кислороде поступает в смешивающий пароводяной подогреватель для её подогрева выше номинальной температуры, но не выше температуры кипения при данном давлении перед подачей в парогенератор. Подмешанные к питательной воде сконденсировавшиеся продукты сгорания водорода в кислороде после срабатывания в паротурбинной установке выводятся из цикла после конденсатора паротурбинной установки и направляются в бак-аккумулятор. Часть продуктов сгорания водорода в кислороде направляется в смешивающий паро-паровой перегреватель. Подмешанные к перегреваемому пару продукты сгорания водорода в кислороде после срабатывания в паротурбинной установке выводятся из цикла после конденсатора паротурбинной установки и направляются в бак-аккумулятор. Изобретение позволяет повысить эффективность использования водородного топлива при его стехиометрическом сжигании.

Также, известен (RU 2 709 783 C2, опубликовано 20.12.2019) способ водородного подогрева питательной воды на АЭС, содержащий водород-кислородную камеру сгорания, тракт охлаждения продуктов сгорания, подогреватели высокого давления питательной воды, питательный насос, компрессор, бак-аккумулятор. Смесь дополнительно генерируемого в парогенераторе пара, полученного за счет подогрева питательной воды перед парогенератором, и продуктов сгорания водорода в кислородной среде после тракта охлаждения продуктов сгорания направляется в дополнительную паровую турбоустановку для выработки мощности, при этом сконденсированный в конденсаторе дополнительно генерируемый пар направляется в регенеративный цикл основной паротурбинной установки, а сконденсированный водяной пар из продуктов сгорания направляется в бак-аккумулятор. При этом неконденсирующиеся из продуктов сгорания газы через систему спецгазоочистки выбрасываются в атмосферу. Изобретение позволяет эффективно и надежно использовать водородное топливо.

Анализ указанных известных решений позволяет утверждать, что существует необходимость создания такой паротурбинной установки, которая имела бы КПД около или выше 50%, при этом должна быть возможность переоборудовать действующие в Российской Федерации АЭС, не затрагивая их оборудования.

Изменить ситуацию, не затрагивая оборудования действующих установок и блоков АЭС, предложено в патенте RU 2661341 C1 (опубликовано 16.07.2018), путём перехода к гибридным АЭС – путем присоединения к основному паропроводу, идущему к действующей влажнопаровой турбине, байпасного трубопровода, позволяющего отводить часть или весь пар, идущий от реактора, на внешний пароперегреватель, использующий для перегрева теплоту сгорания органического или водородного топлива.

Раскрытая в данном патентном документе энергетическая установка позволяет выбрать его в качестве наиболее близкого аналога. Согласно патенту гибридная АЭС содержит последовательно соединенные ядерный реактор, низкотемпературный реакторный парогенератор, низкотемпературную паровую турбину с сепаратором пароперегревателем, конденсатор, конденсатный насос, регенеративные подогреватели низкого давления, деаэратор, питательный насос и подогреватель высокого давления. При этом к основной низкотемпературной паровой турбине присоединяется высокотемпературный паротурбинный блок с котлом пароперегревателем, использующий для перегрева часть пара, идущего из реакторного парогенератора, теплоту сгорания органического топлива. Перегретый высокотемпературный пар направлен к высокотемпературной паровой турбине, присоединенной к стандартной АЭС и общему реакторному парогенератору.

Недостатком известного устройства является то, что в этом случае превышение начальных температур пара свыше (t0II=650°С) ведет не к повышению, а к снижению КПД цикла, так как при начальном давлении P0II=5,2 МПа, давлении в конденсаторе Pк=4,5 кПа и КПД турбины ηоэ=0,88 из последней ступени выходит перегретый пар, не совершающий работы.

Также недостатком является то, что присоединенный к основному блоку высокотемпературный блок работает при начальном давлении пара ниже начального давления пара перед основным паротурбинным блоком, что неизбежно влечет за собой снижение КПД присоединенного блока.

Возвращаясь к паротурбинным установкам следует отметить, что здесь уже работают блоки при начальной температуре пара, равной 650°С при давлении Р0 = 30 МПа, и диапазон дальнейшего повышения начальных температур пара даже при повышении начального давления до 35 МПа не превышает 150-200°С.

Переход к новым суперсверхкритическим параметрам пара требует создания не только турбинного, но и всего котельного оборудования, которое, как показывает опыт эксплуатации новейших паротурбинных установок с начальной температурой пара 650°С, пока не может обеспечить их надежную эксплуатацию при указанной температуре.

Целью настоящего изобретения является преодоление указанных проблем и создание паротурбинной установки на базе уже работающих энергетических паротурбинных установок, позволяющей отработать все проблемные решения перехода к следующим уровням повышения начальных параметров пара с одновременным увеличением экономичности паропаровой установки.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Техническим результатом, которого позволяет достичь предлагаемое изобретение, является расширение диапазона применимых начальных температур и давления пара с одновременным повышением экономичности энергетической установки.

Указанный технический результат достигается за счет организации принципиально новой тепловой схемы такой паротурбинной энергетической установки, которая является паропаровой энергетической установкой и характеризуется тем, что состоит из двух блоков, основного энергетического паротурбинного блока, работающего при стандартных сверхкритических параметрах пара, и присоединенного к нему через внешний пароперегреватель дополнительного паротурбинного блока, работающего при суперсверхкритических начальных параметрах пара, основной энергетический паротурбинный блок содержит энергетический котел, а дополнительный паротурбинный блок содержит котел-утилизатор, при этом пар, покидающий цилиндр среднего давления основного энергетического паротурбинного блока, направляется во внешний пароперегреватель, обеспечивающий увеличение температуры и давления для достижения суперсверхкритических параметров пара, являющихся начальными для присоединенного дополнительного паротурбинного блока, а образующийся при использовании во внешнем пароперегревателе теплоты сгорания топлива перегретый пар используется далее для выработки мощности в цилиндре низкого давления основного энергетического паротурбинного блока.

Стандартными сверхкритическими параметрами пара для работы основного энергетического паротурбинного блока являются температура 540°C и давление 23,8 МПа. Суперсверхкритическими начальными параметрами для работы присоединенного дополнительного паротурбинного блока являются температура 650°C и давление 30 МПа.

Внешний пароперегреватель обеспечивает увеличение температуры до значений от 670°С до 850°С.

Пар, покидающий цилиндр среднего давления основного паротурбинного блока, перегревается во внешнем пароперегревателе теплотой сгорания водородного или органического топлива.

Теплота перегретого пара после котла-утилизатора дополнительного паротурбинного блока полностью используется в цилиндре низкого давления основного энергетического паротурбинного блока. Для генерации пара суперсвехкритических параметров используется теплота перегретого пара низкого давления.

Внешний пароперегреватель представляет собой камеру сгорания. Котёл-утилизатор представляет собой поверхностный теплообменник.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг. 1 показана тепловая схема паропаровой энергетической установки.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Предложена паротурбинная энергетическая установка, которая является сдвоенной и состоит из двух блоков: основного энергетического паротурбинного блока – Блок I, и дополнительного паротурбинного блока – Блок II (Фиг. 1).

Основной энергетический паротурбинный – Блок I работает при стандартных начальных параметрах пара. Дополнительный паротурбинный Блок II работает при суперсверхкритических начальных параметрах пара и присоединен к основному энергетическому паротурбинному – Блок I через внешний пароперегреватель (22).

Стандартными сверхкритическими параметрами пара для работы Блока I являются температура 540°C и давление 23,8 МПа. Суперсверхкритическими начальными параметрами для работы Блока II являются температура 650°C и давление 30 МПа.

Внешний пароперегреватель (22) обеспечивает увеличение температуры до значений от 670°С до 850°С.

Конструкционно основной энергетический паротурбинный – Блок I содержит энергетический котёл (1), цилиндр высокого давления (12), цилиндр среднего давления (13), цилиндр низкого давления (14), конденсатор (15), конденсатный насос (16), подогреватель низкого давления (17), деаэратор (18), питательный насос (19), подогреватель высокого давления (20), промежуточный пароперегреватель (21).

Конструкционно присоединенный дополнительный паротурбинный Блок II содержит котел-утилизатор (23), цилиндр высокого давления паровой турбины (2), цилиндр среднего давления паровой турбины (3), цилиндр низкого давления паровой турбины (4), конденсатор (5), конденсатный насос (6), подогреватель низкого давления (7), деаэратор (8), питательный насос (9), подогреватель высокого давления (10), промежуточный пароперегреватель (11).

Согласно приведенной на Фиг. 1 тепловой схеме, заявляемая паропаровая энергетическая установка работает следующим образом.

Перегретый пар после энергетического котла (1) с начальным давлением P0I=23,8 МПа и температурой t0I=540°C (параметры пара российских турбин сверхвысокого давления) поступает в цилиндр высокого давления (12) основного энергетического паротурбинного Блока I. После цилиндра высокого давления (12) основного энергетического паротурбинного Блока I пар вновь возвращается в энергетический котел (1) на промежуточный перегрев (21), где перегревается до температуры, равной начальной температуре пара t0I = 540°C, и далее поступает в цилиндр среднего давления (13) основного энергетического паротурбинного Блока I.

Отработавший в цилиндре среднего давления (13) основного энергетического паротурбинного Блока I пар вновь идет на вторичный высокотемпературный перегрев во внешний пароперегреватель (22), где перегревается до температуры tвпI, которая, как минимум, на 15-20°С превышает начальную температуру пара перед дополнительным паротурбинным блоком II. При начальной температуре пара перед дополнительным паротурбинным блоком II 650°С, температура греющего пара на входе в котёл-утилизатор (23) tвпI = от 670°С до 850°С.

При этом продукты сгорания водородного или органического топлива во внешнем пароперегревателе (22), представляющем собой камеру сгорания, смешиваются с основным паром и примерно на 15% увеличивают расход пара, покидающего внешний пароперегреватель (22).

Сжигание водородного или органического топлива во внешнем пароперегревателе (22) происходит непосредственно в паровой среде и при подаче окислителя - кислорода, так как продуктами сгорания является такой же пар, как и рабочая среда основного энергетического паротурбинного Блока I. В данном случае сжигание топлива в паровой среде происходит при низком давлении, величина которого находится на уровне 0,3-0,4 МПа.

Далее высокотемпературный пар, покидающий внешний пароперегреватель (22), поступает в качестве греющего агента в котел-утилизатор (23) присоединенного дополнительного паротурбинного блока II.

После котла-утилизатора (23) греющий пар основного энергетического паротурбинного блока I, отдавший основную часть тепловой энергии в присоединенный паротурбинный блок II, при температуре порядка 280-300°С поступает в цилиндр низкого давления (14) основного энергетического паротурбинного Блока I. При этом греющий пар состоит из пара, отработавшего в цилиндре высокого давления (12) основного энергетического паротурбинного Блока I и цилиндре среднего давления (13) основного энергетического паротурбинного Блока I, и пара, образовавшегося при сжигании водородного или органического топлива.

Поскольку в этом случае количество пара, поступающего в цилиндр низкого давления (14) основного энергетического паротурбинного Блока I, за счёт добавочного расхода топлива и кислорода, на 5-7% больше количества пара, покидающего цилиндр среднего давления (13) основного энергетического паротурбинного Блока I, то, соответственно, на 5-7% увеличивается мощность, вырабатываемая в цилиндре низкого давления (14) основного энергетического паротурбинного Блока I. В результате происходит повышение экономичности – увеличение КПД основного энергетического паротурбинного блока I на 2-3%.

Теплота, переданная от внешнего пароперегревателя (22) к котлу-утилизатору (23), обеспечивает функционирование присоединенного дополнительного паротурбинного Блока II при суперсверхкритических начальных параметрах пара – t0II = от 650°С, P0II = 30 МПа.

Вместо энергетического котла (1) в присоединенном дополнительном паротурбинном блоке II используется котёл-утилизатор (23), а теплота перегретого (греющего) пара, покидающего котёл-утилизатор и имеющего температуру на уровне 300°С, используется в цилиндре низкого давления (14) основного энергетического паротурбинного блока I. Эти обстоятельства совместно с высокими начальными параметрами пара в дополнительном паротурбинном Блоке II обеспечивает повышение КПД дополнительного паротурбинного Блока II до 52-55%.

При этом КПД паропаровой энергетической установки достигает величин от 50% до 57%.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Были проведены расчеты и тестирование предлагаемой паропаровой энергетической установки, которые подтвердили достижение указанных технических результатов.

В частности, была протестирована установка, в которой в энергетическом котле (1) вырабатывается пар с параметрами P0I=23,8 МПа и t0I=540°C, который направляется в цилиндр высокого давления (12). После того, как пар преобразовал тепловую энергию в механическую работу в цилиндре высокого давления (12), он направляется на промежуточный перегрев в промежуточный пароперегреватель (21). Пар возвращается в цилиндр среднего давления (13) с температурой, равной tппI=t0I=540°C, при давлении PппI=3,8 МПа.

Отработав в цилиндре среднего давления (13) пар поступает не в цилиндр низкого давления (14), а во внешний пароперегреватель (22) смешивающего типа с температурой tвпI’=240°C, где его температура повышается до tвпI=670°C при давлении PвпI=0,3 МПа. Помимо перегрева пара, при сгорании подведенного водородного топлива в кислороде (окислитель также подводится) непосредственно в паровой среде GI (рабочее тело основного энергетического паротурбинного Блока I) образуется дополнительный расход пара Gдоп (за счет химического соединения водорода с кислородом), который полезно используется в качестве добавочного расхода в цилиндре низкого давления (14).

После внешнего пароперегревателя (22) пар, расход которого уже увеличен на 5-7% за счет добавочного пара, направляется в котёл-утилизатор (23), представляющий собой поверхностный теплообменник, в котором тепловая энергия пара основного энергетического паротурбинного блока I передается пару присоединенного дополнительного паротурбинного блока II. Отдав тепловую энергию в котле-утилизаторе (23), пар с параметрами P0 ЦНДI=0,25 МПа и t0 ЦНДI=300°C возвращается в цилиндр низкого давления (14), где продолжает совершать полезную работу.

После цилиндра низкого давления (14) пар конденсируется в конденсаторе (15), конденсат подается конденсатным насосом (16) в подогреватель низкого давления (17), а затем направляется в деаэратор (18), где происходит очистка пара от газовых примесей. Далее питательная вода (очищенный от примесей конденсат) питательным насосом (19) подается в подогреватель высокого давления (20), а затем в энергетический котёл (1) с температурой питательной воды tпвI=280°C, замыкая цикл основного энергетического паротурбинного блока I.

Параллельно в котле-утилизаторе (23) полученным от пара основного энергетического паротурбинного блока I теплом происходит выработка пара присоединенного дополнительного паротурбинного блока II. Этот пар с параметрами P0II=30 МПа и t0II=650°C направляется в цилиндр высокого давления (2). После цилиндра высокого давления (2) пар направляется на промежуточный перегрев в промежуточный пароперегреватель (11) котла-утилизатора (23). Пар, прошедший промежуточный пароперегреватель (11), с температурой, равной tппII=t0II=650°C, при давлении PппI=6 МПа совершает работу в цилиндре среднего давления (3) и цилиндре низкого давления (4), после чего конденсируется в конденсаторе (5). Конденсат подается конденсатным насосом (6) в подогреватель низкого давления (7), а затем направляется в деаэратор (8), где происходит очистка пара от газовых примесей. Далее питательная вода (очищенный от примесей конденсат) питательным насосом (9) подается в подогреватель высокого давления (10), а затем в котёл-утилизатор (23) с температурой tпвII=280°C, замыкая цикл присоединенного дополнительного паротурбинного Блока II.

В качестве основного паротурбинного Блока I рассматривался, блок с турбиной К-800-240 ЛМЗ) с присоединенной добавочной турбины к нему утилизационным блоком на базе турбины мощностью 240 МВт.

Результаты расчетов тепловой схемы (Фиг.1) сведены в Таблицу 1.

Таблица 1

Технико-экономические показатели всей установки
Мощность Блока 1 МВт Nэ1 818,3
Мощность Блока 2 МВт Nэ2 253,0
Абсолютный электрический КПД «брутто» Блока 1 % ηэ1 47,1
Абсолютный электрический КПД «брутто» Блока 2 % ηэ2 52,0
Абсолютный электрический КПД «брутто» комбинированного цикла % ηэкомб 50,0
Расход водорода на подогреватель кг/с ВH2 3,490
Расход кислорода на подогреватель кг/с ВО2 27,922
Прирост мощности за счёт добавочного расхода водородного топлива МВт ΔNэ 18,3
Суммарная мощность МВт Nэ 1071,3

Также были протестированы установки, в которых пар перегревался до начальных значений 770°C и 850°C.

Во всех установках были определены их КПД. Результаты сведены в Таблицу 2.

Таблица 2

Температура пара tвпI
КПД 50 % 52-53 % 57 %

Таким образом, результаты показывают, что осуществление предлагаемого изобретения позволило достичь всех заявленных технических результатов: диапазон применимых начальных температуры и давления пара был существенно расширен, и одновременно значительным образом повысилась экономичность энергетической установки (КПД установки увеличился до 50-57%).

1. Паропаровая энергетическая установка, характеризующаяся тем, что состоит из двух блоков, основного энергетического паротурбинного блока, работающего при стандартных сверхкритических параметрах пара, и присоединенного к нему через внешний пароперегреватель дополнительного паротурбинного блока, работающего при суперсверхкритических начальных параметрах пара, основной энергетический паротурбинный блок содержит энергетический котел, а дополнительный паротурбинный блок содержит котел-утилизатор, при этом пар, покидающий цилиндр среднего давления основного энергетического паротурбинного блока, направляется во внешний пароперегреватель, обеспечивающий увеличение температуры и давления для достижения суперсверхкритических параметров пара, являющихся начальными для присоединенного дополнительного паротурбинного блока, а образующийся при использовании во внешнем пароперегревателе теплоты сгорания топлива перегретый пар используется далее для выработки мощности в цилиндре низкого давления основного энергетического паротурбинного блока.

2. Паропаровая энергетическая установка по п. 1, отличающаяся тем, что стандартными сверхкритическими параметрами пара для работы основного энергетического паротурбинного блока являются температура 540°C и давление 23,8 МПа.

3. Паропаровая энергетическая установка по п. 1, отличающаяся тем, что суперсверхкритическими начальными параметрами для работы присоединенного дополнительного паротурбинного блока являются температура 650°C и давление 30 МПа.

4. Паропаровая энергетическая установка по п. 1, отличающаяся тем, что внешний пароперегреватель обеспечивает увеличение температуры до значений от 670 до 850°С.

5. Паропаровая энергетическая установка по п. 1, отличающаяся тем, что пар, покидающий цилиндр среднего давления основного паротурбинного блока, перегревается во внешнем пароперегревателе теплотой сгорания водородного топлива.

6. Паропаровая энергетическая установка по п. 1, отличающаяся тем, что пар, покидающий цилиндр среднего давления основного паротурбинного блока, перегревается во внешнем пароперегревателе теплотой сгорания органического топлива.

7. Паропаровая энергетическая установка по п. 1, отличающаяся тем, что теплота перегретого пара после котла-утилизатора дополнительного паротурбинного блока полностью используется в цилиндре низкого давления основного энергетического паротурбинного блока.

8. Паропаровая энергетическая установка по п. 1, отличающаяся тем, что для генерации пара суперсверхкритических параметров используется теплота перегретого пара низкого давления.

9. Паропаровая энергетическая установка по п. 1, отличающаяся тем, что внешний пароперегреватель представляет собой камеру сгорания.

10. Паропаровая энергетическая установка по п. 1, отличающаяся тем, что котёл-утилизатор представляет собой поверхностный теплообменник.



 

Похожие патенты:

Система и процесс многоуровневого охлаждения глубокой скважины и геотермального использования. Технический результат заключается в решении проблемы перегрева в угольном рабочем забое глубокой скважины, обеспечении низкого энергопотребления и обеспечении комфортных условий работы на глубине.
Изобретение относится к области получения или использования геотермального тепла и может быть использовано в грунтовых контурах геотермальных тепловых насосов, в испарительных системах геотермальных тепловых насосов прямого теплообмена, в системах отопления и охлаждения, включая кондиционеры, холодильные установки, использующие в качестве теплоносителя фреоны.

Изобретение относится к теплогенерирующему устройству и способу выработки тепла. Согласно настоящему изобретению предложены теплогенерирующее устройство и способ выработки тепла, обеспечивающие выработку избыточного тепла.

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения жилых, административных и производственных объектов капитального строительства.

Изобретение относится к солнечной энергетике и к области бытовых осветительных, обогревательных приборов, а именно, к приборам для освещения и обогрева холодных и сырых помещений с низкой температурой и малой естественной освещенностью: подвалов, коридоров, прихожих, ванных комнат и санузлов, рудников, шахт, подземных автостоянок и гаражей, станций метро и пр.

Изобретение относится к электроэнергетике и водородной энергетике и может быть использовано в источниках тепловой и электрической энергии. В способе предусмотрено формирование высоковольтного импульсно-периодического электрического разряда между установленными последовательно электродами: анодным (3) электродом, пассивными (6) электродами - обострителями электрического поля и катодным (7) электродом, выполненным из гидридо-образующего металла, формирование вихревого потока водяного пара (2, 7) вдоль оси между электродами, наличие теплообменника (8), наличие газгольдера-сепаратора (9, 10) для разделения и хранения водорода.

Изобретение относится к биоэнергетике и может быть использовано для получения биогаза и готовых органических продуктов биохимической переработкой органических отходов.

Изобретение относится к области гелиоэнергетики, в частности к устройствам, предназначенным для поглощения солнечной энергии с последующим преобразованием в тепловую энергию, в частности к солнечным водонагревателям с принудительной циркуляцией, и может быть использовано в системах водяного отопления и горячего водоснабжения.

Изобретение относится к энергетике, использующей лучистую солнечную энергию и энергию ветра. Солнечно-ветровой агрегат содержит купол с прозрачными стенками и с проемами для прохода воздуха, расположенные под куполом приемник излучения и крыльчатку.

Изобретение относится к области стекла, и в частности относится к вакуумному стеклу и способу его изготовления. Способ изготовления вакуумного стекла, содержащий следующие стадии: i) закрытие полости стеклянным телом и уплотнителем и расположение газопоглотителя в упомянутой полости; ii) нагревание продукта стадии i) в вакуумной среде, создавая тем самым вакуум в упомянутой полости, сварка упомянутого уплотнителя и упомянутого стеклянного тела и активирование упомянутого газопоглотителя; iii) охлаждение продукта стадии ii), а затем получение вакуумного стекла.

Изобретение относится к испарительному сосуду с автоматическим добавлением воды. Он содержит корпус (1) сосуда, нагревательный компонент (2), установленный на корпусе (1) сосуда, водяной насос, соединенный с корпусом (1) сосуда, схему управления для водяного насоса, первую плату (3) для определения температуры и датчик (5) температуры и недостатка воды, установленный на первой плате (3) для определения температуры.
Наверх