Способ контроля глубины прокладки оптического кабеля

Изобретение может быть использовано для контроля глубины прокладки оптического кабеля, в том числе кабеля без проводящих элементов. Техническим результатом является контроль глубины прокладки оптического кабеля и расширение области применения способа. В способе создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристики обратного рассеяния оптического волокна, при этом источник направленного акустического воздействия размещают на поверхности над кабелем и измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e1, затем, сохраняя неизменным положение источника в горизонтальной плоскости, поднимают его над поверхностью на известное расстояние H, после чего измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e2, и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для контроля глубины прокладки оптического кабеля, в том числе кабеля без проводящих элементов.

Известны индукционные способы контроля глубины прокладки кабелей [1-8], заключающиеся в том, что к цепи «провод-земля» кабельной линии подключают генератор и измеряют параметры магнитного поля, возбуждаемого протекающим по проводнику данной цепи током, по которым и определяют глубину залегания кабеля. Данные способы неприменимы для контроля глубины прокладки оптического кабеля без проводящих элементов.

Известны способы определения местоположения трубопровода [9, 10], заключающиеся в том, что к трубопроводу подключают импульсный генератор, с помощью акустических датчиков над трубопроводом измеряют акустические сигналы, по параметрам которых определяют местоположение трубопровода. Данные способы не предназначены для контроля глубины прокладки оптических кабелей.

Наиболее близким к заявляемому является способ определения местоположения оптического кабеля [11], заключающийся в том, что над кабелем продольно-поперечно относительно предполагаемой трассы кабеля перемещают источник направленного акусто-вибрационного воздействия, при этом по отдельному каналу связи управляют перемещениями источника направленного акусто-вибрационного воздействия и уровнем акусто-вибрационного воздействия, с помощью фазочувствительного импульсного оптического рефлектометра, у которого длина когерентности оптического источника излучения больше длительности зондирующего импульса, измеряют характеристику обратного рассеяния оптического волокна при отсутствии вибрационного воздействия, затем производят акусто-вибрационное воздействие на кабель с поверхности земли, перемещая источник направленного вибрационного воздействия над предполагаемой трассой, с помощью фазочувствительного импульсного оптического рефлектометра, у которого длина когерентности оптического источника излучения больше длительности зондирующего импульса, измеряют характеристику обратного рассеяния оптического волокна при вибрационном воздействии и определяют местоположение кабеля по положению источника направленного вибрационного воздействия, при котором разница между характеристиками обратного рассеяния, измеренными с помощью фазочувствительного импульсного оптического рефлектометра до начала и при вибрационном воздействии в месте вибрационного воздействия максимальна. Однако данный способ не предназначен для контроля глубины прокладки оптического кабеля.

Сущностью предполагаемого изобретения является расширение области применения.

Эта сущность достигается тем, что согласно способу контроля глубины прокладки оптического кабеля создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристики обратного рассеяния оптического волокна, при этом предварительно источник направленного акустического воздействия размещают на поверхности над кабелем и измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e1, затем, сохраняя неизменным положение источника направленного акустического воздействия в горизонтальной плоскости, поднимают его над поверхностью на известное расстояние H, после чего измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e2, и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле

(1).

На чертеже представлена структурная схема устройства для реализации заявляемого способа.

Устройство включает проложенный ниже поверхности земли 1 оптический кабель 2 с оптическим волокном 3, фазочувствительный импульсный оптический рефлектометр 4 и источник направленного акустического воздействия 5.

Оптическое волокно 3 проложенного ниже поверхности земли 1 оптического кабеля 2 подключено ко входу фазочувствительного импульсного оптического рефлектометра 4, а источник направленного акустического воздействия расположен над кабелем на поверхности.

Устройство работает следующим образом. Фазочувствительный импульсный оптический рефлектометр 4 измеряет характеристики обратного рассеяния оптического волокна 3, по которым определяют оценки наводимых в оптическом волокне в результате акустического воздействия в месте воздействия уровней сигналов. Предварительно определяют оценку уровня сигнала при размещении источника акустического воздействия на поверхности над кабелем e1, а затем при расположении источника акустического воздействия в той же точке на высоте H над поверхностью e2. После чего, оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности h, которое рассчитывают по формуле (1).

В отличие от известного способа, которым является прототип, заявляемый способ включает измерения параметров акустического воздействия с использованием оптического волокна как распределенного акустического сенсора для двух значений расстояния от источника акустического воздействия до кабеля в одной точке кабельной линии, что и позволяет в отличие от известного способа, которым является прототип, контролировать глубину прокладки оптического кабеля и тем самым расширить область применения заявляемого способа по сравнению с прототипом.

ЛИТЕРАТУРА

1. SU 98345

2. SU 569984

3. RU 2315337

4. RU 2326343

5. RU 2635402

6. WO 2017/164765

7. RU 2699379

8. RU 2713104

9. RU 2482515

10. RU 127203

11. RU 2656295.

Способ контроля глубины прокладки оптического кабеля, заключающийся в том, что создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристики обратного рассеяния оптического волокна, отличающийся тем, что предварительно источник направленного акустического воздействия размещают на поверхности над кабелем и измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e1, затем, сохраняя неизменным положение источника направленного акустического воздействия в горизонтальной плоскости, поднимают его над поверхностью на известное расстояние H, после чего измеряют характеристику обратного рассеяния оптического волокна с помощью фазочувствительного импульсного оптического рефлектометра, по которой определяют оценку уровня воздействующего акустического сигнала в месте воздействия e2, и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле

.



 

Похожие патенты:

Настоящее изобретение относится к системам для обнаружения неисправностей в электрических сетях. Техническим результатом является обеспечение возможности измерения различных электрических параметров и возможности определения неисправности на их основе.

Изобретение относится к электротехнике, а именно к релейной защите и автоматике линий электропередачи, и может быть использовано при создании устройств защиты и автоматики, требующих высокую степень адаптации характеристик срабатывания к режимам защищаемого объекта.

Использование: в области электротехники. Технический результат - повышение точности и упрощение процедуры поиска места короткого замыкания в питающей тяговой сети, что приводит к указанию истинного места короткого замыкания, и, как следствие, к сокращению времени поиска места замыкания и проведения ремонтно-восстановительных работ.

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения (ОМП) в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения.

Изобретение относится к контрольно-измерительной технике и может быть использовано для нахождения места снижения сопротивления изоляции относительно земли (корпуса) электроустановок, устройств, обмоток и других объектов, содержащих последовательно включенные элементы (участки) с приблизительно одинаковыми параметрами.

Изобретение относится к электроэнергетике и может быть использовано для определения для дистанционного определения координат места возникновения коронного разряда на высоковольтной линии электропередачи.

Использование: в области электроэнергетики. Технический результат - увеличение надежности и достоверности определения фидера с однофазным неустойчивым дуговым замыканием на землю в электрических сетях с неэффективно заземленной нейтралью.

Использование: в области электротехники. Технический результат – повышение надежности и быстродействия устранения токов короткого замыкания.
Использование: в области энергетики для обнаружения замыкания на землю фазы коротких шин тяговых подстанций, соединяющих выход силового трансформатора и вход выпрямителя.

Изобретение относится к электроизмерительной технике и касается устройства обнаружения и измерения электрического разряда высоковольтного оборудования. Устройство включает в себя наблюдательную и измерительную ветви, дальномер и блок обработки и отображения информации.

Изобретение относится к метрологии, в частности к устройствам определения параметров трубопровода. Установка выполнена с возможностью дистанционного измерения геометрических параметров трубопровода на стадии спуска посредством звуковых волн в режиме реального времени.
Наверх