Способ моделирования процесса очистки поверхности и устройство для его реализации

Группа изобретений относится к области моделирования процессов очистки различных поверхностей изделий от загрязнений, возникающих в процессе производства и эксплуатации, с целью выбора оптимальных режимов и воздействующих факторов. Способ моделирования процесса очистки поверхности включает предварительное взвешивание чистого экспериментального образца (ЭО), нанесение модельного загрязнения (МЗ) и проведение эксперимента по очистке ЭО с нанесённым МЗ при ультразвуковой очистке и при ультразвуковой очистке с кратковременным периодическим механическим воздействием, приводящим к колебанию ЭО на различных частотах. После каждого эксперимента вынимают ЭО, проверяют степень очистки и энергетические затраты, сравнивают с предыдущим результатом. Группа изобретений относится также к устройству для осуществления указанного способа, содержащему УЗ-излучатель, нагреватель, столик, очищаемый ЭО, очистную ванну, устройство для перемещения столика, импульсный генератор и электромагнитный ударный вибратор с подвижным магнитным штоком, причем выход импульсного генератора подключен ко входу электромагнитного ударного вибратора, а подвижный магнитный шток жестко связан с ЭО. Группа изобретений позволяет проводить исследование процесса очистки при дополнительном механическом воздействии в процессе ультразвукового воздействия на очищаемую поверхность, погруженную в очистную ванну с технической жидкостью, что обеспечивает определение эффективности введения механических колебаний в процессе ультразвуковой очистки различных загрязнений. 2 н.п. ф-лы, 1 ил.

 

Группа изобретений относится к системам очистки различных поверхностей изделий от загрязнений, возникающих в процессе производства и эксплуатации. Изобретения могут быть также применены для моделирования процессов очистки с целью выбора оптимальных режимов и воздействующих факторов.

Известно техническое решение Комплексный модуль ультразвуковой очистки длинномерных изделий по патенту РФ № 2393928 B08B 3/12, состоящий из камеры мойки, в виде соединенных посредством фланцев патрубков-резонаторов, с внешней стороны которых крепятся ультразвуковые излучатели, средства для установки деталей, сливного трубопровода, системы подачи рабочего агента, предохранительного клапана.

Однако данное устройство, реализующее способ очистки длинномерных деталей имеет ограниченные функциональные возможности применительно к ракетно-космической технике.

Наиболее близким техническим решением к предлагаемому является Способ моделирования процесса очистки, приведённый в кн. [1] Агранат Б.А. Ультразвуковая техника. М.: Металлургия, 1974 г. 504 стр., - рис. 98 на стр. 272, основанный на ультразвуковом воздействии (УЗВ) на очищаемую поверхность, погруженную в очистную ванну (ОВ) с технической жидкостью.

К основному недостатку этого технического решения относится сложность воздействия на загрязненную поверхность образца при крупных частицах загрязнений, особенно остатков металлической стружки при повышенной адгезии вязкой загрязняющей основы (загустевшее масло и др. нефтепродукты), что приводит к необходимости увеличения энергетических вложений в процесс чистки, либо за счет избыточного времени чистки, либо за счет повышения амплитуды УЗВ при одновременном повышении температуры процесса. Таким образом в прототипе не используется такой влияющий на качество очистки и затраты энергетики фактор, как механические колебания очищаемой поверхности.

Технический результат предлагаемого технического решения заключается в возможности исследовании процесса очистки при дополнительном механическом воздействии в процессе ультразвукового воздействия (УЗВ) на очищаемую поверхность, погруженную в очистную ванну (ОВ) с технической жидкостью.

Этот технический результат достигается тем, что в известный способ моделирования процесса очистки поверхности, основанный на УЗВ, на очищаемую поверхность, погруженную в ОВ с технической жидкостью, вводят следующие действия:

1) перед проведением моделирования проводят предварительное взвешивание чистого экспериментального образца (ЭО), наносят модельное загрязнение (МЗ) и вновь проводят взвешивание ЭО с нанесенным МЗ, заливают заданный объём жидкости в ОВ с последующим подогревом до заданной температуры и погружают ЭО с нанесённым МЗ в ОВ,

2) осуществляют УЗВ и, через интервал времени ΔТ1 прекращают эксперимент, вынимают ЭО, проверяют степень очистки взвешиванием, определяют энергетические затраты, удаляют остатки МЗ, сливают техническую жидкость из ОВ,

3) после этого наносят МЗ на очищенную поверхность ЭО, заливают заданный объём жидкости в ОВ с последующим подогревом до заданной температуры и погружают ЭО с нанесённым МЗ в ОВ, повторяют действия,

4) прикладывают УЗВ и кратковременное периодическое механическое воздействие в интервале времени ΔТ2, приводящее к колебанию ЭО на различных частотах, и через интервал времени ΔТ1 прекращают эксперимент,

5) после каждого эксперимента вынимают ЭО, проверяют степень очистки, определяют энергетические затраты и сравнивают с предыдущим результатом без механического воздействия.

Предлагаемое техническое решение поясняется Фиг., на которой представлена схема установки для моделирования процесса очистки поверхности ЭО и устройство для его реализации: 1 - ультразвуковой (УЗ) генератор, 2 - осциллограф, 3 - источник питания подогревателя жидкости, 4 - УЗ-излучатель, 5 - устройство фиксации излучателя, 6 - очистная ванна, 7 - ЭО, 8 - подогреватель, 9 - техническая жидкость, 10 - импульсный генератор, 11 - электромагнитный ударный вибратор (механический возбудитель колебаний ЭО), 12 - подвижный магнитный шток, жестко связанный с ЭО, 13 - устройство для перемещения столика, 14 - столик.

Пояснение действий способа.

1) перед проведением моделирования выполняют предварительное взвешивание чистого ЭО, наносят МЗ и вновь выполняют взвешивание ЭО с нанесенным МЗ, заливают заданный объём жидкости в ОВ с последующим подогревом до заданной температуры и погружают ЭО с нанесённым МЗ в ОВ,

Тип, состав, способ нанесения МЗ для каждого исследования могут быть существенно различными и определяется условиями изготовления, эксплуатации и рядом свойств очищаемой поверхности (адгезия, когезия), например, в прототипе это окалины после изготовления изделия, при производстве баков ракет, топливной аппаратуры это жировые отложения от смазки инструментов, используемых при изготовлении, частицы прилипшего металла. Материал очищаемой поверхности, степень его шероховатости и т.д. также влияет на способ нанесения МЗ. В рассматриваемом случае в качестве загрязнения полагается металлическая стружка, прилипшая к сплаву АМг-6 из которого изготавливают топливные магистрали жидкостных ракет и самолётов. В процессе экспериментов модели загрязнений могут существенно меняться.

В качестве жидкости могут использоваться различные моющие составы, с поверхностно-активными веществами, различные хлор фторуглеродные жидкости для обезжиривания и промывки деталей и т.д.

2) осуществляют УЗВ, через интервал времени ΔТ1 прекращают эксперимент, вынимают ЭО, проверяют степень очистки взвешиванием, определяют энергетические затраты и удаляют остатки МЗ, сливают техническую жидкость из ОВ

Проверка степени очистки ЭО осуществляется различными традиционными методами, например, взвешиванием образца и т.д.

3) после этого наносят МЗ на очищенную поверхность ЭО, заливают заданный объём жидкости в ОВ с последующим подогревом до заданной температуры и погружают ЭО с нанесённым МЗ в ОВ

Нанесение МЗ аналогично п. 1), меняют жидкость в ОЧ, сохраняют режим нагрева жидкости.

4) прикладывают УЗВ и кратковременное периодическое механическое воздействие в интервале времени ΔТ2, приводящее к колебанию ЭО на различных частотах, и через интервал времени ΔТ1 прекращают эксперимент

Режим УЗВ, параметры механического воздействия: интервал времени ΔТ2 в каждом эксперименте соответствует программе эксперимента.

5) после каждого эксперимента вынимают ЭО, проверяют степень очистки, определяют энергетические затраты и сравнивают с предыдущим результатом без механического воздействия

Проверка степени очистки ЭО аналогично п. 2).

Интервалы времён ΔТ1, ΔТ2 определяют экспериментально из условия динамики очистки, оценки энергетических затрат и т.д.

Устройство для реализации способа.

В качестве прототипа принимается устройство, приведённое в [1] рис. 98 на стр. 272, включающее в свой состав УЗ-излучатель, очищаемый ЭО, очистную ванну с технологической жидкостью, регулятор высоты установки ЭО. Основное назначение данного устройства - исследование режимов ультразвукового травления металлических поверхностей, т.е. без учёта возможных механических колебаний ЭО.

Предлагаемое устройство включает УЗ - генератор 1, осциллограф 2, источник питания подогревателя жидкости 3, УЗ - излучатель 4, устройство фиксации излучателя 5, очистную ванну 6, выполненную из стекла в виде стакана, очищаемый ЭО 7, подогреватель 8, также в его состав введены импульсный генератор 10, электромагнитный ударный вибратор 11, подвижный магнитный шток 12, жестко связанный с ЭО 7, устройство для перемещения 13 столика 14. Выход УЗ - генератора 1 подсоединен к контактам возбуждения УЗ - излучателя 4, который закреплен на устройстве фиксации 5. Очистная ванна 6 с технической жидкостью 9 расположена на рабочей поверхности подогревателя 8, который вместе со столиком 14 может перемещаться с помощью устройства для перемещения столика 13. Подогреватель 8 подсоединен к выходу источника питания подогревателя 3. Над УЗ - излучателем 4 с помощью устройства фиксации 5 установлен электромагнитный ударный вибратор 11, вход которого подсоединен к выходу импульсного генератора 10, а подвижный магнитный шток 12 жестко связан с ЭО 7.

Предлагаемое устройство работает следующим образом: включают УЗ - генератор 1, работа которого контролируется осциллографом 2. С помощью источника питания 3 осуществляется подогрев технической жидкости 9 с помощью подогревателя 8, УЗ - излучатель 4 погружен в техническую жидкость 9 и фиксируется на заданном расстоянии от ЭО 7 в очистной стеклянной ванне 6 с помощью устройства для перемещения столика 13.

Импульсный генератор 10 предназначен для генерирования частоты с помощью которой электромагнитный ударный вибратор 11 (механический возбудитель колебаний ЭО) через подвижный магнитный шток 12, жестко связанный с ЭО 7, обеспечивает механические колебания ЭО на различных частотах.

Технический эффект предлагаемой группы изобретений позволяет определить эффективность введения механических колебаний в процессе ультразвуковой очистки различных загрязнений.

Данное техническое решение создано в рамках выполнения научно-исследовательских работ по ГЗ № 2019-0251 от 02.03.2020 г.

1. Способ моделирования процесса очистки поверхности, основанный на ультразвуковом воздействии (УЗВ) на очищаемую поверхность, погруженную в очистную ванну (ОВ) с технической жидкостью, отличающийся тем, что перед проведением моделирования выполняют предварительное взвешивание чистого экспериментального образца (ЭО), наносят модельное загрязнение (МЗ) и вновь выполняют взвешивание ЭО с нанесённым МЗ, заливают заданный объём жидкости в ОВ с последующим подогревом до заданной температуры и погружают ЭО с нанесённым МЗ в ОВ и осуществляют УЗВ, через интервал времени ΔТ1 прекращают эксперимент, вынимают ЭО, проверяют степень очистки взвешиванием, определяют энергетические затраты и удаляют остатки МЗ, сливают техническую жидкость из ОВ, после этого наносят МЗ на очищенную поверхность ЭО, заливают заданный объём жидкости в ОВ с последующим подогревом до заданной температуры и погружают ЭО с нанесённым МЗ в ОВ, прикладывают УЗВ и кратковременное периодическое механическое воздействие в интервале времени ΔТ2, приводящее к колебанию ЭО на различных частотах, и через интервал времени ΔТ1 прекращают эксперимент, после каждого эксперимента вынимают ЭО, проверяют степень очистки и энергетические затраты, сравнивают с предыдущим результатом без механического воздействия.

2. Устройство для реализации способа по п. 1, включающее в свой состав УЗ-излучатель, нагреватель, столик, очищаемый ЭО, очистную ванну и устройство для перемещения столика, отличающееся тем, что в его состав введены импульсный генератор и электромагнитный ударный вибратор с подвижным магнитным штоком, причем выход импульсного генератора подключен ко входу электромагнитного ударного вибратора, а подвижный магнитный шток жестко связан с ЭО.



 

Похожие патенты:
Изобретение относится к медицине, а именно к кардиологии, клинической лабораторной диагностике и гематологии. Способ определения высокой остаточной реактивности тромбоцитов у пациентов с ишемической болезнью сердца, принимающих кардиомагнил (75 мг) в течение 6 месяцев, заключается в определении индивидуально пациенту значений размеров агрегатов по кривой размера агрегатов с графической регистрацией в течение 5 мин с постоянным перемешиванием и температурой 37°С, добавлении к богатой тромбоцитами плазме индуктора агрегации тромбоцитов коллагена в соотношении 10:1 в концентрации 2 мкмоль/л на 10 секунде регистрации агрегации тромбоцитов на лазерном агрегометре, затем дополнительно к богатой тромбоцитами плазме вносят индуктор в соотношении 2:1 по 2 мкмоль/л на 1, 2, 3 и 4 минутах исследования, при этом анализ результатов проводят по кривой размеров агрегатов и при получении значений размеров агрегатов тромбоцитов в диапазоне от 4,8 до 25 отн.

Изобретение относится к области измерительной техники, а именно к устройствам, предназначенным для анализа в атмосферном воздухе метана и паров углеводородов при низкой температуре Τ≥-80°С, и может быть использовано для сканирования распределений их объемной концентрации на объектах нефтегазовой промышленности, а также для мониторинга атмосферы и предупреждения техногенных аварий.

Данная группа изобретений относится к иммунологии. Предложены способы скрининга антигенсвязывающего домена, антигенсвязывающая активность которого варьирует в зависимости от концентрации специфичного к ткани-мишени соединения.

Изобретение относится к области молекулярной иммунобиотехнологии. Раскрыт способ определения биологических макромолекул, включающий сорбцию молекул соединения, способного специфически связывать определяемое соединение (аналит), на поверхности лунок иммунологического планшета, последовательные инкубации с образцом, содержащим аналит, и конъюгатом железоуглеродных наночастиц, функционализированных узнающими молекулами, специфичными к определяемому аналиту, с промывками лунок ЗФРТ между каждой операцией.

Изобретение относится к медицине, а именно к иммунологии, имплантологии, хирургии, и может быть использовано для индивидуальной оценки биосовместимости с организмом имплантируемых полимерных материалов.

Изобретение относится к области медицины, в частности к молекулярной биологии и онкологии. Предложена тест-система «ESSC-tipe-1» для молекулярно-генетического типирования плоскоклеточного рака пищевода, содержащая контрольные смеси и реагенты для амплификации ДНК в режиме реального времени ПЦР-РВ: смесь для ПЦР-РВ реакции, состоящую из 0,57 мМ dNTPs, 7,1 мМ MgCl2, 2,7-кратного ПЦР-буфера с 2,9-кратной концентрацией красителя EvaGreen Dye и 7,1% ДМСО, ДНК-полимеразы Thermus aquaticus 5 ед./мкл и высокоспецифичных прямых и обратных олигонуклеотидных праймеров для локусов CUL3: SEQ ID3 и SEQ ID4, ATG7: SEQ ID5 и SEQ ID6, SOX2: SEQ ID7 и SEQ ID8, ТР63: SEQ ID9 и SEQ ID10, YAP1: SEQ ID11 и SEQ ID12, VGLL4: SEQ ID13 и SEQ ID14, CDK6: SEQ ID15 и SEQ ID16, KDM6A: SEQ ID 17 и SEQ ID8 и В2М: SEQ ID1 и SEQ ID2 с концентрацией 1,8 мкМ каждого в водном растворе.

Изобретение относится к области биотехнологии. Описана группа изобретений, включающая фармацевтическую композицию для лечения гемофилии А, содержащую рекомбинантный вирус ААВ5-FVIII-SQ в концентрации от приблизительно 1E12 вг/мл до приблизительно 2E14 вг/мл, способ лечения субъекта, страдающего от гемофилии А, способ уменьшения времени кровотечения при эпизоде кровотечения у субъекта, страдающего от гемофилии A, способ повышения экспрессии белка фактора VIII у субъекта, способ лечения субъекта, страдающего от гемофилии A, включающий этапы определения отсутствия антител к капсиду ААВ5 в сыворотке указанного субъекта и введения вышеуказанной фармацевтической композиции, и способ лечения субъекта, страдающего от гемофилии A, включающий этапы введения указанному субъекту фармацевтической композиции и, после введения указанной фармацевтической композиции, определения отсутствия или присутствия антител к капсиду ААВ5 в сыворотке указанного субъекта.

Группа изобретений относится к иммунологическому анализу. Раскрыт реагент для оценки продуктов расщепления перекрестносшитого фибрина (XDP) плазмином, где указанный реагент для оценки включает анти-XDP антитело, которое реагирует с XDP, но не реагирует с фибриногеном и с фрагментом X, фрагментом Y, фрагментом D1 и фрагментом E3, которые представляют собой продукты расщепления фибриногена плазмином, и не реагирует ни с одним из фрагментов, полученных посредством диссоциации мономера DD/E, то есть с фрагментом DD, фрагментом E1 и фрагментом E2, и агент, образующий хелатный комплекс с кальцием.

Изобретение относится к погружным устройствам гидростатического типа для контактного измерения плотности в жидкостях, находящихся в вертикальных каналах или скважинах.

Изобретение относится к области медицинской диагностики. Предложен способ прогнозирования веса новорожденного у беременных русской национальности, являющихся уроженками Центрального Черноземья России с преэклампсией, не имеющих отягощенного семейного анамнеза по преэклампсии, и в сочетании с синдромом задержки роста плода.

Группа изобретений относится к области сельского хозяйства. Способ состоит в промывке капельных водовыпусков с помощью ультразвука.
Наверх