Способ клонального микроразмножения флокса метельчатого

Изобретение относится к области биотехнологии. Изобретение представляет собой способ, включающий высадку микрорастений на питательную среду по прописи Мурасиге и Скуга (MS) с минеральными солями для этапа пролиферации, дополнительно в питательную среду добавляют препараты кинетин (0,1 мг/л) и ИМК (0,1 мг/л) и микрорастения в течение 50-60 дней инкубируют в световой комнате при интенсивности освещения 2500 люкс, 16-часовом фотопериоде и температуре 20-22°С. Затем осуществляют микрочеренкование, при котором нижнюю укорененную часть растений-регенерантов отправляют на адаптацию к нестерильным условиям, а верхнюю часть разделяют на одноузловые сегменты и высаживают на свежую питательную среду для дальнейшего тиражирования. Изобретение позволит на 65-70 дней ускорить производственный процесс за счет совмещения этапов пролиферации и ризогенеза. 3 ил. 3 табл.

 

Изобретение относится к области биотехнологии растений и цветоводства, может быть использовано для ускоренного микроразмножения флокса метельчатого in vitro.

В настоящее время остро ощущается ограниченный сортимент флокса метельчатого, так как сорта, созданные российскими селекционерами (Гаганов П.П. 1930; Шаронова М.Ф. 1965; Репрев Ю.А. 1983; Шаповал Т.П.; Фетисова И.В. 1993; Скратынь Н.Ю. 1970; Борисова В.Г. 2013; Константинова Е.А. 1985; Алексашин П.И. 2012; Калугина А.В.) доступны только в ботанических садах или у коллекционеров. В основном ассортимент, представленный в современных питомниках, ограничивается легко размножаемыми сортами с невысокими декоративными качествами и классической окраской цветка, помимо этого наблюдается недостаток качественного посадочного материала.

Методы клонального микроразмножения садовых растений активно используются по всему миру, давая возможность получать посадочный материал высших категорий качества. Однако, в настоящее время данная технология не реализует в полной мере потенциал флокса метельчатого и требует разработки приемов, позволяющих оптимизировать способы введения флокса метельчатого в культуру in vitro, условий длительного депонирования, снизить длительность периода субкультивирования на этапе мультипликации, увеличить коэффициент размножения микрорастений, сократить длительность этапа корнеобразования и повысить приживаемость регенерантов на этапе адаптации к нестерильным условиям.

Для массового клонального микроразмножения флокса метельчатого в производственных условиях необходимо разрабатывать новые элементы технологии обеспечивающие максимальную простоту и технологичность операций, сведение потерь материала к минимуму на всех этапах культивирования и хорошую воспроизводимость результатов.

При оптимизации таких технологий массового воспроизводства растений в культуре in vitro важно обеспечить их экономическую эффективность за счет снижения затрат на химические реактивы, удешевления питательных сред и повышение адаптационной способности пробирочных растений к условиям ex vitro при увеличении выхода и качества конечной продукции [2].

Литературные источники свидетельствуют о том, что не существует единого протокола для массового микроразмножения цветочных растений, относящихся не только к разным ботаническим семействам, но и даже видам и сортам. Кроме того, известно, что решающим фактором питательной среды, эффективно регулирующим первичный и вторичный обмен клеток, являются фитогормоны [1].

Роль цитокининов неоценима в процессе дифференцировки, приводящей к делению клеток. Они снимают апикальное доминирование и индуцируют развитие пазушных почек, регулируют рост соматических зародышей и формирование растений. Кроме этого, цитокинины замедляют старение органов и повышают их устойчивость к неблагоприятным условиям внешней среды [6]. Таким образом, эти гормоны играют весьма важную роль при клональном микроразмножении растений [7]. Установлено, что введение в питательную среду ауксинов в сочетании с цитокининами стимулировало образование первичных и вторичных регенерантов в 1,5 и более раз по сравнению с использованием только цитокининов. Возможно, данный эффект вызван синергизмом - эффектом взаимного усиления действия веществ. [8].

Известен способ культивирования флокса метельчатого на питательных средах по прописям Murashige & Skoog (MS), Woody Plant Medium (WPM), Gamdorg & Eveleigh (B5) с добавлением 30 г/л сахарозы и регуляторов роста β-индолил-3-масляной кислоты (ИМК) и 6-бензиламинопурина (6-БАП) в равной концентрации. Культивирование осуществляют в режиме 16-часового дня при освещенности 2500-3500 Лк и температуре +24±2°С [10].

Наиболее близким к изобретению по совокупности существенных признаков относится способ размножения гвоздики in vitro (Патент RU 2553545 С1) [9] в котором посадку эксплантов осуществляют на питательную среду MS, дополненную сахарозой 30 г/л и регуляторами роста 1 мг/л 6-бензиламинопурина (6-БАП) и 0,2 мг/л нафтилуксусной кислоты (НУК). Микроразмножение производят путем отделения микропобегов от эксплантов и культивируют в световой комнате при температуре 25±2°С и 16-часовом фотопериоде с освещением белыми люминесцентными лампами с интенсивностью 2500-3000 лк. Укоренение производят на питательной среде MS дополненной Рибав-Экстра 0,01-0,1 мг/л. Дальнейшее укоренение в грунте проводят в условиях ex vitro.

Из анализа известных аналогичных технических решений выявлено, что технической проблемой в данной области является длительность производственных процессов, которые включают следующие четыре этапа: первый - введение в культуру, второй - пролиферацию, третий - индукцию ризогенеза и четвертый - адаптацию к нестерильным условиям. А также необходимая пересадка на свежие питательные среды при массовом тиражировании, которая влечет за собой затраты на изготовление питательных сред и повышенную трудоемкость производства.

Технический результат изобретения - ускорение производственных процессов клонального микроразмножения флокса метельчатого.

Для решения указанной проблемы и достижения заявленного технического результата разработан способ клонального микроразмножения флокса метельчатого, включающий три этапа: первый - введение в культуру, второй - совмещение пролиферации и ризогенеза, третий - адаптация к нестерильным условиям.

Трехэтапный способ клонального микроразмножения предусматривает: после этапа введения в культуру, микрочеренки флокса метельчатого высаживают на питательную среду для этапа мультипликации с минеральными солями по прописи Мурасиге и Скуга (MS), обогащенную следующими веществами: (мг/л) тиамин-гидрохлорид (В1), пиридоксин-гидрохлорид (В6), никотинамид (РР) - 0,5; мезоинозит - 100; глицин - 1; сахароза - 30000 мг/л, агар-агар - 7000, и добавляют препараты кинетин (0,1 мг/л) и ИМК (0,1 мг/л).

Далее растения содержат в условиях культуральной комнаты при интенсивности освещения 2500 люкс, 16-и часовом фотопериоде и температуре 20-22°С в течение 50-60 дней. При этом одновременно происходит элонгация и укоренение микропобегов. Затем осуществляют микрочеренкование, при котором нижнюю укорененную часть растений-регенерантов отправляют на этап адаптации к нестерильным условиям. А верхнюю часть - разделяют на одноузловые сегменты и сажают на свежую питательную среду, для дальнейшего тиражирования (фиг.1).

Сведения, подтверждающие возможность осуществления способа.

Исследования по разработке способа клонального микроразмножения флокса метельчатого (Phlox paniculata L.) проводили в лаборатории клонального микроразмножения садовых растений лаборатории плодоводства РГАУ МСХА имени К.А. Тимирязева в 2017-2019 годах.

1. Для приготовления 1 л питательной среды сначала делают навески (мг): сахарозы - 30000, агар-агара - 7000 и мезоинозита - 100.

2. В мерный цилиндр или мерную колбу объемом 1 л наливают примерно 150 мл дистиллированной воды и добавляют маточные растворы минеральных макросолей и микросолей по прописи MS, далее добавляют следующие вещества: (мг/л) тиамин-гидрохлорид (В1), пиридоксин-гидрохлорид (В6), никотинамид (РР) - 0,5, глицин - 1, далее вводят в состав питательной среды препарат кинетин (0,1 мг/л) и ИМК (0,1 мг/л).

3. Параллельно на лабораторной плитке в огнеупорном мерном стакане разогревают дистиллированную воду объемом около 800 мл, доводя ее практически до кипения. Затем около 400 мл горячей воды отливают в другой мерный стакан, растворяют в ней сахарозу и добавляют ее в мерный цилиндр с растворами солей и витаминов.

4. Далее в огнеупорный мерный стакан высыпают агар-агар и заливают его небольшим количеством холодной дистиллированной воды и перемешивают. Затем добавляют заранее приготовленную горячую дистиллированную воду и растворяют агар-агар на лабораторной плитке, доводя до кипения. При этом важно следить, что в момент кипения агар-агар не переливался через стенки мерного стакана.

5. Далее расплавленный агар-агар добавляют в мерный цилиндр или мерную колбу, с предварительно добавленными растворами макросолей, микросолей, глицина, витаминов, гормонов и сахарозы. И горячей дистиллированной водой доводят объем до 1000 мл.

6. Измеряют рН раствора и с помощью 0,1 н KOH доводят его до уровня 5,5-5,7.

7. Готовую питательную среду разливают по культуральным сосудам объемом 200 мл порциями по 30 мл. И подвергают стерилизации в автоклаве при температуре 120°С и давлении 0,1 мПа в течение 20 мин.

8. В ламинарном боксе в каждый сосуд помещают по 10-15 микрочеренков.

9. Далее культуры инкубируют в культуральной комнате при интенсивности освещения 2500 люкс, 16-и часовом фотопериоде и температуре 20-22°С в течение 50-60 дней.

Способ схематично представлен на схеме.

На фиг. 1. Сравнение прототипа и предлагаемого трехэтапного способа клонального микроразмножения.

На фиг. 2. Внешний вид микрорастений флокса метельчатого при укоренении на питательной среде в варианте Кинетин 0,1 мг/л + ИМК 0,1 мг/л.

На фиг. 3. Внешний вид адаптированных ex vitro растений флокса метельчатого после укоренения на питательной среде с добавлением препаратов кинетин 0,1 мг/л + ИМК 0,1 мг/л.

Примеры конкретного выполнения способа.

Известно, что цитокинины всегда работают в паре с ауксинами, и в технологии in vitro часто совмещают эти два гормона для усиления действия друг друга. Поэтому у многих видов растений оптимальное формирование корней in vitro происходит в присутствии ауксинов и цитокининов [4]. Хотя считается, что цитокинины ингибируют укоренение, на более поздних стадиях ингибирующий эффект цитокининов исчезает, и развитие корневых зачатков зависит от типа цитокининов [2, 11]. Рост пазушных почек может ингибироваться, когда ауксины накапливаются в высоких концентрациях. Содержание регуляторов роста ауксинового ряда инициируют формирование придаточных корней и заложение корневых меристем [4].

В результате исследований выявлено, что во всех вариантах с применением препарата кинетин укореняемость микрорастений составила 60-100%. Лучшие результаты получены при совместном применении препаратов кинетин (0,1 мг/л) и ИМК (0,1 мг/л).

У сорта Успех укореняемость микрорастений составила 80,2% против 70,1% в контроле, а коэффициент размножения - 5,3 ед. против 5,1 ед. в контроле.

У сорта Дракон - укореняемость 70,1% против 50,3% в контроле, а коэффициент размножения - 5,7 ед. против 5,3 ед. в контроле.

У сорта Sweet Summer Favorite укореняемость - 75,2% против 60,4% в контроле, а коэффициент размножения - 6,9 ед. против 6,0 ед. в контроле (таблица 1, фиг. 2).

Далее на этапе адаптации к нестерильным условиям приживаемость микрорастений во всех вариантах составила 100%. Что касается развития, то у всех исследуемых сортов только в одном варианте с добавлением в питательную среду препаратов кинетин 0,1 мг/л + ИМК 0,1 мг/л по всем учитываемым показателям получены достоверные различия с контролем.

У сорта Успех средняя длина побегов составила 8,2 см, против 3,3 см в контроле, средняя длина корней - 16,1 см, против 12,6 см в контроле, а среднее число корней - 10,5 см, против 8,1 см. У сорта Дракон средняя длина побегов - 6,9 см, против 3,2 см в контроле, средняя длина корней - 15,4 см, против 11,2 в контроле, а среднее число корней - 9,6 см, против 6,2 см. И у сорта Sweet Summer Favorite средняя длина побегов составила 6,2 см, против 4,0 см в контроле, средняя длина корней - 14,7 см, против 10,1 см в контроле, а среднее число корней - 10,3 см, против 8,1 см (таблица 2, фиг. 3).

Таким образом, разработан энерго- и ресурсосберегающий способ клонального микроразмножения флокса метельчатого по трехэтапной схеме с совмещением этапов мультипликации и ризогенеза, который на 65-70 дней ускоряет производственный процесс по сравнению с прототипом (таблица 3).

Технико-экономические преимущества или иная эффективность изобретения по сравнению с прототипом.

При оценке экономической эффективности разработанной трехэтапной технологии клонального микроразмножения, для массового производства посадочного материала флокса метельчатого в течение одного года учитывали такие факторы, как затраты на электроэнергию, стоимость расходных материалов, повышение коэффициента размножения, укореняемости и приживаемости на этапе адаптации. При этом выявлено, что разработанная трехэтапная, энерго- и ресурсосберегающая технология ускоренного размножения флокса метельчатого в культуре in vitro позволяет в 1,5 раза снизить себестоимость и в 6 раз увеличить уровень рентабельности производства адаптированных микрорастений.

Список, использованной литературы

1. Алрашиди А.А., Соловьев А.А., Панина А.О., Калашникова Е.А., Киракосян Р.Н. Влияние различных цитокининов на размножение ашваганды (withania somnifera) in vitro // Актуальные проблемы ботаники и охраны природы - 2017, - С. 118-125

2. Высоцкий В.А. Клональное микроразмножение жимолости в производственных условиях / Высоцкий В.А., Валиков В.А. // Садоводство и виноградарство. - 2014 - №6. - С. 18-19.

3. Высоцкий В. А. Клональное микроразмножение растений // Культура клетокрастений и биотехнология. Под ред. Бутенко Р.Г., 1986, - С. 360.

4. Деменко В.И., Шестибратов К.А., Лебедев В.Г. Укоренение - ключевой этап размножения растений in-vitro // Известия ТСХА. - 2011.- вып.:1. - С. 60-71.

5. Зарипова А.А., Шаяхметов И.Ф., Байбурина Р.К. Культура зародышей Paeonia anomala L - Вестник Башкирского университета - Т. 12. - номер 4 - С. 36-37.

6. Катаева Н.В., Бутенко Р.Г. Клональное микроразмножение растений. - М.: Наука, 1983. - С. 96.

7. Матушкин С.А. Влияние различных цитокининов на регенерацию смородины черной in vitro // Плодоводство и ягодоводство России. - Т. 43. - С. 306-308.

8. Миронова О.Ю. Автореферат Разработка и совершенствование технологий клонального микроразмножения декоративно-цветочных культур // Автореферат дисс. на соискание ученой степени кандидата биологических наук. - Москва - 2004 - С. 28.

9. Патент на изобретение RU 2553545 С1, 20.06.2015. Способ размножения гвоздики in vitro Мокшин Е.В., Лукаткин А.С., Дудкин Е.А. Заявка №2014115085/10 от 15.04.2014.

10. Пищева Г.Н., Мочалова О.В. Влияние минерального состава питательной среды на рост и развитие микрорастений флокса метельчатого // Вестник Алтайского государственного аграрного университета - 2018. №5 (163). С. 85-90.

11. Sziraki, I., Balazs, Е., and Kiraly, Z., Role of Different Stresses in Inducing Systemic Acquired Resistance to TMV and Increasing Cytokinin Levels in Tobacco, Physiol. Plant Pathol., 1980, vol. 16, pp. 277-284.

Способ клонального микроразмножения флокса метельчатого, включающий высадку растений-регенерантов на питательную среду для этапа пролиферации с минеральными солями по прописи Мурасиге и Скуга (MS), отличающийся тем, что растения-регенеранты высаживают в питательную среду, дополненную кинетином и индолилмасляной кислотой в количестве до 0,1 мг/л каждого, далее растения-регенеранты для элонгации и укоренения субкультивируют в условиях световой комнаты при интенсивности освещения 2500 люкс, 16-часовом фотопериоде, температуре 20-22°С в течение 50-60 дней, затем осуществляют микрочеренкование, при котором нижнюю укорененную часть растений-регенерантов отправляют на адаптацию к нестерильным условиям, а верхнюю часть разделяют на одноузловые сегменты и высаживают на свежую питательную среду для дальнейшего тиражирования.



 

Похожие патенты:

Изобретение относится к области биотехнологии. Изобретение представляет собой способ длительного депонирования in vitro растений малины ремонтантной относится к области сельского хозяйства, в частности к биотехнологии растений, и может быть использован для длительного беспересадочного хранения микрорастений малины ремонтантной.

Способ относится к биотехнологии и может быть использован для получения нового исходного материала для создания сортов. Способ включает изолирование соцветий и культивирование пыльников и завязей на питательной среде.

Изобретение относится к области биотехнологии. Предложен способ снижения витрификации микрорастений ореха грецкого в культуре in vitro.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ размножения в культуре in vitro сортов Amelanchier alnifolia (Nutt.) Nutt.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ длительного беспересадочного хранения растений малины, еживики и малино-еживичных гибридов в условиях in vitro, включающий в себя предварительное культивирование микропобегов растений на среде MS с добавлением сахарозы 25-30 г/л, агар-агара 9 г/л, витаминов MS 1 мл/л, AgNO3 1-5 мг/л, 6-Бензиламинопурина 0,5-0,8 мг/л, с последующей инкубацией растений в течение 2 недель при интенсивном (примерно 5000 люкс) длиннодневном режиме освещения (16 ч день/8 ч ночь) при температуре +22°С и переносом растений в условия длительного хранения на +4°С при пониженной интенсивности освещения (примерно 2000 люкс) и режиме короткого дня (8 ч день/16 ч ночь).

Изобретение относится к области биотехнологии растений. Способ включает культивирование микропобегов в условиях in vitro.

Изобретение относится к биотехнологии, в частности культивированию клеток растения вздутоплодника сибирского, и может быть использовано для получения биомассы клеток с содержанием кумаринов.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ размножения растений шпажника болотного Gl.
Изобретение относится к области биотехнологии. Изобретение представляет собой способ расчета площади поверхности корневой системы у меристемной культуры картофеля, предусматривающий морфометрические измерения у оцениваемого экземпляра меристемной культуры картофеля с помощью MOB-18-х микрометра окулярного винтового, отдельный расчет площади боковой поверхности (Sбок корневого отростка) каждого корневого отростка у оцениваемого экземпляра меристемной культуры картофеля по формуле: Sбок корневого отростка=π×Rкорневого отростка×Lкорневого отростка, где Sбок корневого отростка - площадь боковой поверхности одного корневого отростка у оцениваемого экземпляра меристемной культуры картофеля, мм2; π - математическая постоянная, равная 3,14; Rкорневого отростка - радиус основания корневого отростка, мм; Lкорневого отростка - образующая корневого отростка, мм, с последующим суммированием полученных результатов.
Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения искусственных семян на основе меристем культуры паслёна клубненосного (Solanum tuberosum L.), заключающийся в инкапсуляции фрагментов меристем молодых стеблей паслёна клубненосного в гелевых капсулах, содержащих биоцид.
Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения растений-регенерантов из язычковых цветков хризантем in vitro, предназначенный для культивирования in vitro язычковых цветков растений хризантемы, и может быть использовано для массового получения генетически однородного посадочного материала ценных сортов и гибридов хризантем, где в качестве первичного экспланта используют язычковые цветки, которые культивируют на питательной среде, содержащей минеральные соли по прописи Мурасиге и Скуга, а также гормоны 6-бензиламинопурин (БАП) в концентрации 1 мг/л и индолилуксусная кислота (ИУК) 0,5 мг/л и препарат Аминовен 15%-ный в концентрации 3 мл/л. Изобретение позволяет увеличить выход растений. 1 пр.
Наверх