Способ получения закаленных стекломикрошариков

Изобретение относится к области получения стекломикрошариков и может быть использовано в технике и электронике, а также в дорожном строительстве в качестве светоотражающих элементов в дорожной разметке. Технический результат изобретения заключается в получении стекломикрошариков с высокой микротвердостью. Технический результат достигается тем, что способ получения закаленных стекломикрошариков включает дозирование компонентов шихты, их усреднение, формование компонированной шихты, ввод ее в факел плазменной горелки электродугового плазмотрона, плазменное распыление компонированной шихты с образованием стекломикрошариков и их сбор в сборнике, причем компонированная шихта представлена в виде гранул с оптимальным размером 1-3 мм, а стекломикрошарики дополнительно закаливают с помощью двух последовательных технологических операций – воздушного и водяного охлаждения. 1 пр., 3 табл.

 

Изобретение относится к области получения стекломикрошариков и может быть использовано в технике и электронике, а также в дорожном строительстве в качестве светоотражающих элементов в дорожной разметке.

Из уровня техники известен способ получения стекломикрошариков, включающий предварительное измельчение и рассев на фракции стеклобоя, оплавления гранулированного измельченного стекла (Будов В.М., Егоров Л.С. Стеклянные микрошарики. Применение, свойства, технология // Стекло и керамика. 1993. №7. С. 2-7).

Недостатком аналога является низкая микротвердость стекломикрошариков.

Наиболее близким решением к предлагаемому способу по технической сущности и достигаемому результату является способ получения стекломикрошариков, включающий дозирование компонентов шихты, их усреднение, формование стержней (компонированной шихты), ввод их в плазменный факел плазменной горелки электродугового плазмотрона, плазменное распыление стержней с образованием стекломикрошариков и их сбор в специальном сборнике (Крохин В.П., Бессмертный. В.С., Пучка О.В., Никифоров В.М. Синтез алюмоиттриевых стекол и минералов // Стекло и керамика.1997. №9. С 6-7).

Недостатком прототипа является низкая микротвердость стекломикрошариков.

Технический результат предлагаемого изобретения заключается в получении стекломикрошариков с высокой микротвердостью.

Технический результат достигается тем, что способ получения закаленных стекломикрошариков включает дозирование компонентов шихты, их усреднение, формование компонированной шихты, ввод ее в факел плазменной горелки электродугового плазмотрона, плазменное распыление компонированной шихты с образованием стекломикрошариков и их сбор в специальном сборнике, причем компонированная шихта представлена в виде гранул с оптимальным размером 1-3 мм, а стекломикрошарики дополнительно закаливают с помощью двух последовательных технологических операций – воздушного и водяного охлаждения.

Предложенный способ отличается от прототипа тем, что компонированная шихта представлена в виде гранул с оптимальным размером 1-3 мм, а стекломикрошарики дополнительно закаливают с помощью двух последовательных технологических операций – воздушного и водяного охлаждения.

Сопоставительный анализ известного и предлагаемого способов представлен в таблице 1.

Таблица 1

В предлагаемом способе гранулы подаются в факел плазменной горелки, где под действием высоких температур происходит образование диспергированного силикатного расплава, капли которого попадают в зону действия воздушного сопла и охлаждаются до температуры перехода стекла из пиропластического в вязко-текучее с образованием размягченных стекломикрошариков. Затем они попадают в зону действия водяной струи, где охлаждаются до температуры ниже перехода стекла из хрупкого состояния в пиропластическое и переходят в хрупкое состояние.

В результате двухстадийного охлаждения происходит плавное снижение температуры стекломикрошариков до температуры перехода стекла из пиропластического в вязко-текучее и резкое охлаждение водяной струей до температуры перехода стекла из хрупкого состояния в пиропластическое. Это приводит к закаливанию стекломикрошариков и повышению их эксплуатационных показателей, в частности микротвердости.

Экспериментально установлены технологические параметры известного и предлагаемого способов (таблица 2).

Проведенный анализ известных и предлагаемого способов получения, закаленных стекломикрошариков позволяет сделать заключение о соответствии заявляемого изобретения критерию «новизна».

Пример

Для экспериментальной проверки была приготовлена шихта. По стандартной методике расчетным путем был составлен ее состав (на 100 г): натрий углекислый - 27,9 мас.%, борная кислота – 52,27 мас.%, безводный кремнезем – 54,16 мас.%, поташ – 3,4 мас.%, свинцовый глет – 6,88 мас.%.

Компоненты шихты усредняли в лабораторном смесителе и гранулировали в тарельчатом грануляторе. Гранулы с оптимальным размером 1-3 мм оплавляли в факеле плазменной горелки ГН-5р электродугового плазмотрона УПУ-3М со следующими параметрами: ток=350А, расход плазмообразующего газа аргона 0,0014 кг/с. После чего они распылялись с образованием стекломикрошариков, которые закаливались с помощью двух последовательных технологических операций – воздушного и водяного охлаждения.

Таблица 2

Сопоставительный анализ технологических параметров известного и предлагаемого способов

№ п/п Наименование показателя Ед. измерения Известный
способ
Предлагаемый способ
1 Плазмотрон - УПУ-3М УПУ-3М
2 Плазменная горелка - ГН-5р ГН-5р
3 Параметры работы плазмотрона
- ток
- напряжение
- мощность
А
В
кВт
400-500
30-32
250-350
30-32
4 Плазмообразующий газ - Аргон Аргон
5 Расход газа кг/с 0,0014 0,014
6 Давление газа МПа 0,27-0,29 0,27-0,29
7 Исходный материал для получения микрошариков - Стержни длиной
250-300 м
Гранулы диаметром
1-3 мм
8 Расход воздуха на охлаждение кг/с - 0,002
9 Расход воды на охлаждение л/мин - 10-12
10 Диаметр шариков мкм 1100-1250 800-3000
11 Микротвердость стекломикрошариков по методу Виккерса HV 432±10* 728±10*
12 Производительность г/сек 5* 20*

* - по собственным исследованиям.

Опытным путем установлены оптимальные размеры гранулированной шихты для получения стекломикрошариков, которые составляют 1-3 мм (таблица 3).

Таблица 3

Размер гранулированной шихты

№ п/п Размеры гранулированной шихты Органолептическая оценка качества стекломикрошариков
1 менее 1мм Поверхностная деформация за счет низкой вязкости расплава
2 1 мм Стекломикрошарики сферической формы
3 2 мм Стекломикрошарики сферической формы
4 3 мм Стекломикрошарики сферической формы
5 более 3 мм Деформированные стекломикрошарики, непровар шихты

Микротвердость полученных стекломикрошариков определяли по методу Виккерса, которая составила 728±10 HV, что выше в 1,5 раза по сравнению с данным показателем стекломикрошариков, полученных известным способом.

Способ получения закаленных стекломикрошариков, включающий дозирование компонентов шихты, их усреднение, формование компонированной шихты, ввод ее в факел плазменной горелки электродугового плазмотрона, плазменное распыление компонированной шихты с образованием стекломикрошариков и их сбор в сборнике, отличающийся тем, что компонированная шихта представлена в виде гранул с оптимальным размером 1-3 мм, а стекломикрошарики дополнительно закаливают с помощью двух последовательных технологических операций - воздушного и водяного охлаждения.



 

Похожие патенты:

Способ изготовления неорганических мелкодисперсных наполнителей, а именно полых стеклянных микросфер и микрошариков, которые могут использоваться в химической, судостроительной авиационно-космической строительной индустрии и других отраслях промышленности, а также в бытовых целях.

Группа изобретений относится к заготовке для изготовления дентальной формованной детали, такой как вкладка, накладка, коронка или мост, а также к соответствующей дентальной формованной детали и способу ее изготовления.

Изобретение относится к вибрационному гранулятору стекломассы. Гранулятор содержит наполненный водой транспортирующий вибрационный лоток, состоящий из горизонтального корытообразного желоба, снабженного патрубками слива воды, и двух наклонных желобов, расположенных с противоположных сторон горизонтального корытообразного желоба.

Изобретение относится к способу получения стекла для световозвращающих микрошариков. Способ включает варку стекла до получения однородного расплава с последующей отливкой на гранулят и охлаждением.

Предложенное решение относится к стеклянным микрошарикам, которые могут быть использованы для струйной обработки, для противоожоговых кроватей, в качестве наполнителя (при изготовлении полимеров, цементов, бетонов, облицовочных материалов, мастик, шпатлевок, герметиков, синтаксических пен), для изготовления световозвращающих устройств, например, в системах обеспечения безопасности дорожного движения и, в частности, при разметке поверхности дорог.

Изобретение относится к области производства неорганических высокодисперсных наполнителей, а именно полых микросфер, используемых в производстве композиционных материалов различного назначения.

Изобретение относится к устройству для получения микросфер и микрошариков из оксидных материалов. Устройство содержит плазменный генератор с вынесенным стабилизированным дуговым разрядом, включающий соосно и вертикально расположенные на расстоянии друг от друга катод и трубчатый полый графитовый анод.

Изобретение относится к устройству для получения микросфер и микрошариков из оксидных материалов. Устройство содержит плазменный генератор с вынесенным стабилизированным дуговым разрядом, включающий соосно и вертикально расположенные на расстоянии друг от друга катод и трубчатый полый графитовый анод.

Изобретение относится к получению полых микросфер. Способ получения полых микросфер оксидов металлов включает предварительную подготовку исходного порошка оксида металла и классификацию полученного порошка по размерам, последовательную загрузку одной из выделенных фракций порошка в дозатор, плавление и сфероидизацию в потоке низкотемпературного факела плазмы плазмотрона, охлаждение образовавшегося продукта и классификацию его по размерам с определением насыпного веса готовых микросфер.

Изобретение относится к получению полых микросфер. Способ получения полых микросфер оксидов металлов включает предварительную подготовку исходного порошка оксида металла и классификацию полученного порошка по размерам, последовательную загрузку одной из выделенных фракций порошка в дозатор, плавление и сфероидизацию в потоке низкотемпературного факела плазмы плазмотрона, охлаждение образовавшегося продукта и классификацию его по размерам с определением насыпного веса готовых микросфер.
Наверх