Способ изготовления контейнера для взрывчатых веществ

Изобретение относится к области изготовления контейнера для транспортировки, хранения и детонации взрывчатых веществ. Техническим результатом предлагаемого изобретения является снижение длительности технологического процесса изготовления контейнера для взрывчатых веществ. Технический результат достигается тем, что способ изготовления контейнера для взрывчатых веществ включает формирование внешнего слоя капсулы в трубе из высокопрочной стали, изготовление конического внутреннего слоя капсулы, монтаж внутреннего слоя капсулы в металлической трубе с внешним слоем капсулы, заполнение вариативного слоя, окончательный монтаж капсулы с установкой заглушки и крышки, при этом формирование внешнего слоя капсулы в трубе из высокопрочной стали осуществляют методом плазменного напыления технического глинозема при скорости подачи 3,5-4,0 г/с и расходе плазмообразующего газа 2,0 м3/ч, изготовление конического внутреннего слоя капсулы выполняют путем спекания пироксенового ситалла при температуре 830-850°С, заполнение вариативного слоя осуществляют гранулированным высокопористым акустическим материалом. 3 табл.

 

Изобретение относится к области изготовления контейнера для транспортировки, хранения и детонации взрывчатых веществ.

Из уровня техники известны способы изготовления контейнеров для транспортировки, хранения и детонации взрывчатых веществ, их недостатком являются длительность технологического процесса.

Наиболее близким решением к предлагаемому способу по технической сущности и достигаемому результату является способ изготовления контейнеров для транспортировки, хранения и детонации взрывчатых веществ [Игнатова А.М. Физико-химические закономерности получения и применение стеклокристаллических материалов шпинелид-пироксенового состава из природного и техногенного сырья: дис. … докт. тех. наук: 05.17.11 / А.М. Игнатова – Томск: Национальный исследовательский Томский политехнический университет. – 2019. – 153с.], включающий формирование внешнего слоя капсулы в трубе из высокопрочной стали по технологии «труба в трубе», изготовление конического внутреннего слоя капсулы по технологии центробежного литья, монтаж внутреннего слоя капсулы в металлической трубе с внешним слоем капсулы, заполнение вариативного слоя измельченным стеклокристаллический материалом на основе габбродолерита с добавкой хромовой руды, окончательный монтаж капсулы с установкой заглушки и крышки.

Недостатком данного способа является длительность технологического процесса изготовления контейнера для взрывчатых веществ за счет подготовки сырьевых материалов.

Технический результат предлагаемого изобретения заключается в снижении длительности технологического процесса изготовления контейнера для взрывчатых веществ.

Технический результат достигается тем, что предлагаемый способ изготовления контейнера для взрывчатых веществ включает формирование внешнего слоя капсулы в трубе из высокопрочной стали, изготовление конического внутреннего слоя капсулы, монтаж внутреннего слоя капсулы в металлической трубе с внешним слоем капсулы, заполнение вариативного слоя, окончательный монтаж капсулы с установкой заглушки и крышки, причем формирование внешнего слоя капсулы в трубе из высокопрочной стали осуществляется методом плазменного напыления технического глинозема при скорости подачи 3,5-4,0 г/с и расходе плазмообразующего газа 2,0 м3/ч, изготовление конического внутреннего слоя капсулы выполняется путем спекания пироксенового ситалла при температуре 830-850°С, заполнение вариативного слоя осуществляется гранулированным высокопористым акустическим материалом.

Заявленное изобретение отличается от прототипа тем, что формирование внешнего слоя капсулы в трубе из высопрочной стали осуществляется методом плазменного напыления технического глинозема при скорости подачи 3,5-4,0 г/с и расходе плазмообразующего газа 2,0 м3/ч, изготовление конического внутреннего слоя капсулы выполняется путем спекания пироксенового ситалла при температуре 830-850°С, заполнение вариативного слоя осуществляется гранулированным высокопористым акустическим материалом.

Сопоставительный анализ известного и предлагаемого способов представлен в таблице 1.

Предлагаемый способ позволяет снизить время изготовления контейнера для взрывчатых веществ по сравнению прототипом почти в 4 раза (таблица 1), что подтверждено исследованиями, проведенными в лаборатории на базе БГТУ им. В.Г. Шухова. Эксперименты показали, что время изготовления контейнера для взрывчатых веществ прототипом составляет 17 часов, а предлагаемым способом – 4,5 часа.

Таблица 1

Сопоставительный анализ известного и предлагаемого способов

Известный способ Предлагаемый способ
Формирование внешнего слоя капсулы в трубе из высокопрочной стали по технологии «труба в трубе»
(10 ч)

Изготовление конического внутреннего слоя капсулы по технологии центробежного литья
(5 ч)

Монтаж внутреннего слоя капсулы в металлической трубе с внешним слоем капсулы
(1 ч)

Заполнение вариативного слоя измельченным стеклокристаллический материалом на основе габбродолерита с добавкой хромовой руды
(0,5 ч)

Окончательный монтаж капсулы с установкой заглушки и крышки
(0,5 ч)
Формирование внешнего слоя капсулы в трубе из высокопрочной стали методом плазменного напыления технического глинозема при скорости подачи 3,5-4,0 г/с и расходе плазмообразующего газа 2,0 м3
(0,5 ч)

Изготовление конического внутреннего слоя капсулы путем спекания пироксенового ситалла при температуре 830-8500С
(2 ч)

Монтаж внутреннего слоя капсулы в металлической трубе с внешним слоем капсулы
(1ч)

Заполнение вариативного слоя гранулированным высокопористым акустическим материалом
(0,5 ч)

Окончательный монтаж капсулы с установкой заглушки и крышки
(0,5 ч)

Опытным путем установлены оптимальные параметры напыления при формировании первого и второго слоев капсулы (таблица 2 и 3).

Как видно из таблиц 2 и 3, эффективное напыление при формировании первого слоя капсулы осуществляется при достижении плотности напыления слоя технического глинозема в пределах 3990-3995 кг/м3 и его пористости = 0,1-0,2 %, а второго слоя – при температуре обжига равной 830-850°С и прочности на сжатие 112-120 МПа.

Таблица 2

Оптимальные параметры напыления при формировании первого слоя капсулы

№ п/п Расход газа,
м3
Расход порошка, г/сек Плотность, кг/м3 Пористость, %
1 1,5 3,0 3884 1,9
3,5 3901 1,3
4,0 3912 0,8
4,5 3903 1,2
5,0 3876 1,8
2 2,0* 3,0 3950 0,4
3,5* 3999* 0,1*
4,0* 3995* 0,2*
4,5 3970 0,5
5,0 3940 0,9
3 2,5 3,0 3894 1,4
3,5 3910 1,2
4,0 3929 0,9
4,5 3910 1,1
5,0 3890 1,3

* - оптимальные параметры напыления

Пример.

На внутреннюю поверхность металлической трубы из высокопрочной стали с помощью плазменной горелки ГН-5р электродугового плазмотрона УПУ-8М напыляли порошок технического глинозема (внешний слой капсулы) со скоростью его подачи из порошкового питателя в ГН-5р равной 4,0 г/с, расходом плазмообразующего газа 2,0 м3/ч и мощностью работы плазмотрона 12 кВт. Время напыления внешнего слоя капсулы в трубе толщиной 3000 мкм составило 30 минут.

Для приготовления конического внутреннего слоя капсулы в трубе использовали шихту пироксенового ситалла, которую предварительно прессовали, а затем спекали в муфельной печи в течение двух часов при температуре 840°С.

Затем монтировали внутренний слой капсулы с внешним в металлической трубе, причем вариативный слой между ними засыпали гранилированным пористым акустическим материалом. После чего к трубе монтировали фланцевую заглушку и крышку.

Таблица 3

Оптимальные параметры спекания при формировании второго слоя капсулы

Температура обжига, °С Прочность на сжатие, МПа
800 79
810 84
820 92
830** 114**
840** 120**
850** 112**
860 87
870 75

** - оптимальные параметры напыления

Способ изготовления контейнера для взрывчатых веществ, включающий формирование внешнего слоя капсулы в трубе из высокопрочной стали, изготовление конического внутреннего слоя капсулы, монтаж внутреннего слоя капсулы в металлической трубе с внешним слоем капсулы, заполнение вариативного слоя, окончательный монтаж капсулы с установкой заглушки и крышки, отличающийся тем, что формирование внешнего слоя капсулы в трубе из высокопрочной стали осуществляют методом плазменного напыления технического глинозема при скорости подачи 3,5-4,0 г/с и расходе плазмообразующего газа 2,0 м3/ч, изготовление конического внутреннего слоя капсулы выполняют путем спекания пироксенового ситалла при температуре 830-850°С, заполнение вариативного слоя осуществляют гранулированным высокопористым акустическим материалом.



 

Похожие патенты:

Изобретение относится к потенциально опасным изделиям, в частности к средствам их доставки в подземные сооружения. Сущность изобретения заключается в том, что потенциально опасные изделия перемещаются к подземным сооружениям с помощью пневматического лифта.

Изобретение относится к хранению боеприпасов, в частности к металлической многоразовой таре для хранения и транспортировке боеприпасов. Металлическая многоразовая тара для хранения и транспортировки боеприпасов содержит крышку, основание, запирающий элемент и ручку для переноски.

Изобретение относится к области упаковки боеприпасов для последующего их хранения и транспортировки, в частности к устройствам, обеспечивающим механизированную укладку патронов стрелкового оружия в гнезда упаковочной тары - коробки или коробчатого типа решетки.

Контейнер для взрывоопасных грузов относится к контейнерным перевозкам, в частности к специальным контейнерам, предназначенным для безопасной перевозки, хранения и технического обслуживания взрывоопасных грузов в регионах с повышенной социальной напряженностью и диверсионной опасностью, а также в условиях возникновения аварийных ситуаций, при которых контейнер с взрывоопасным грузом может быть подвержен доступу посторонних лиц.

Изобретение относится к области военной техники и предназначено для удерживания снарядов, ракет и мин в укладках на объектах самоходной артиллерии, бронетанковой техники и корабельных артиллерийских установках.

Изобретение относится к штучной укладке снарядов в контейнеры для транспортировки в зафиксированном положении. .

Изобретение относится к области военной техники и предназначено для размещения снарядов и мин в объектах самоходной (самодвижущейся) артиллерии и бронетанковой техники, также может быть использовано на корабельных артиллерийских установках.

Изобретение относится к области военной техники и предназначено для размещения и фиксации снарядов и мин на объектах самоходной артиллерии и бронетанковой техники, также может быть использовано на корабельных артиллерийских установках.

Изобретение относится к области военной техники и предназначено для хранения и транспортировки боеприпасов в военных гусеничных машинах. .

Изобретение относится к военной технике, в частности к упаковке боеприпасов в металлическую герметичную сварнозакатную коробку. .
Наверх