Асфальтобетонная смесь

Изобретение относится к строительным материалам, конкретно – к составам асфальтобетонной смеси и может быть использовано при устройстве и ремонте покрытий автомобильных дорог. Технический результат – повышение прочности асфальтобетона. Асфальтобетонная смесь для дорожного строительства, содержащая шлак доменный, песок и битум нефтяной дорожный, в качестве песка содержит отход медеплавильного производства - купершлак фракции 0,071-2,5 мм, минеральный порошок, содержащий от 60-100% минералов гранатов при следующем соотношении компонентов, мас.%: шлак доменный фракции 5-40 мм - 45,0, битум нефтяной дорожный - 5,5, купершлак - фракции 0,071-2,5 мм - 43,5, указанный минеральный порошок фракции 0,071-0,315 мм - 6. 2 табл.

 

Изобретение относится к строительным материалам, а именно к составам асфальтобетонной смеси, состоящей из дорожного вязкого битума и минеральных материалов, и может быть использовано при устройстве и ремонте покрытий автомобильных дорог.

Известен состав асфальтобетонной смеси, состоящий из дроблённого доменного шлака фракции 0,14-25 мм, дробленного горного песка фракции 0,14-2,5 мм, содержащего 20-30% минералов гранатов взамен песка, нефтяного вязкого битума [Патент РФ № 2380331-Прототип].

Недостатком известной асфальтобетонной смеси является то, что в составе асфальтобетонной смеси используются в качестве вяжущего материала-нефтяной вязкий битум, который, согласно требованиям действующего ГОСТ 9128-2013 ("Смеси асфальтобетонные, полимерасфальтобетонные, асфальтобетон, полимерасфальтобетон для автомобильных дорог и аэродромов"), рекомендуется применять в мягких климатических условиях, характеризуемых средними температурами самого холодного месяца года, выше минус 10°С, т.е. эксплуатация асфальтобетонного покрытия с использованием указанного выше вяжущего, возможна только в южных регионах Российской Федерации.

Так же недостатком является использование в составе асфальтобетонной смеси дроблённого доменного шлака, в процессе дробления которого на теле зёрен шлака образуется множество мелких трещин и микропор с нарушенной внутренней структурой. При постоянных нагрузках автотранспорта, происходит разрушение каркаса и целостности асфальтобетона, что сократит срок эксплуатации не только асфальтобетонного покрытия, но и всей конструкции дорожной одежды.

Технический результат – повышение прочности асфальтобетона из заявляемой асфальтобетонной смеси.

Техническая задача – повышение прочности асфальтобетона из заявляемой асфальтобетонной смеси за счет использования в составе асфальтобетона отхода медеплавильного производства и минеральных материалов с высокой прочностью и твердостью.

Решение технической задачи асфальтобетонная смесь для дорожного строительства, содержащая шлак доменный, песок и битум нефтяной дорожный дополнительно содержит в своём составе: отход медеплавильного производства-купершлак и минеральный порошок, содержащий от 60-100% минералов граната, при следующем соотношении компонентов мас. %: шлак доменный фракции 5-40 мм – 45,0, битум нефтяной дорожный – 5,5, купершлак - отход медеплавильного производства фракции 0,071-2,5 мм – 43,5, минеральный порошок, содержащий 60-100% минералов граната фракции 0,071-0,315 мм – 6.

Таким образом, предлагаемый состав асфальтобетонной смеси, по сравнению с составом по прототипу, за счет использования в нём отхода медеплавильного производства (купершлака) и минерального порошка содержащего от 60-100% минералов граната обеспечивает повышение прочности и водостойкости асфальтобетона, что и является новым техническим результатом заявляемого изобретения.

Сущность заявляемого изобретения состоит в том, что для повышения физико-механических показателей асфальтобетона в составе приготовляемой смеси используют: отход медеплавильного производства - купершлак и минеральный порошок состоящий из минералов граната.

Применяемый, в составе асфальтобетонной смеси купершлак изготавливается из отходов медеплавильного производства и является высокопрочным синтетическим абразивным минеральным материалом. Купершлак имеет плотность 1,5 г/см3, твердость не менее 6,0 ед. по шкале Моос, что позволяет обеспечить прочность асфальтобетона.

Применяемый минеральный порошок приготавливается из минералов гранатов. В эту группу минералов входят: пироп Mg3Al2[SiO4]3; гроссуляр Ca3Al2[SiO4]3, альмадин Fe3Al2[SiO4]3, спессартин Mn3Al2[SiO4]3, андрадин Ca3Fe2[SiO4]3, уваровит Ca3Сr2[SiO4]3. Гранаты имеют высокую плотность 4,0-4,3 г/см3, а также высокую твердость 7,1-8,0 ед. по шкале Моос. Кроме того, тонкий помол минерального порошка, содержащий 60-100% минералов граната, способствует заполнению микро- и макропор и капилляров доменного шлака и надежную их цементацию и тем самым повышает прочность асфальтобетонного покрытия.

Осуществление способа Для получения асфальтобетонной смеси использовали следующие соотношения компонентов, масс. %: в качестве наполнителя применялся доменный шлак фракционированный 5-40 мм (0-60%). В качестве заполнителя (песка или отсева дробления) применялся купершлак фракций 0,071-2,5 мм (30-80%), минеральный порошок фракция 0,071-0,315 мм, содержащий 60-100% минералов гранатов и в качестве вяжущего битум нефтяной дорожный.

Асфальтобетонную смесь получают следующим образом: в смеситель засыпают предварительно отдозированный песок и щебень, перемешивание осуществляют при температуре 180-200°С. В нагретую смесь песка и щебня засыпают холодный минеральный порошок, перемешивая, дозированно вводят нагретый жидкий битум. Продолжительность перемешивания в смесителе до получения готовой смеси составляет 60-90 сек. Приготовленную асфальтобетонную смесь нормировано по массе засыпают в цилиндрические формы и изготавливают из неё образцы. Испытания полученных образцов производят согласно требованиям действующих нормативных документов (ГОСТ 12801-93, ГОСТ 9123-2013).

Примеры конкретного исполнения

Для сравнения физико-механических свойств заявляемой асфальтобетонной смеси изготовили несколько составов, из которых наилучшие физико-механические свойства при испытаниях показали три состава асфальтобетонной смеси.

Кроме того, асфальтобетон, приготовленный по заявляемому составу асфальтобетонной смеси, был испытан согласно предъявляемым требованиям ГОСТ 9128-2013: пределы прочности при температурах +50°С, +20°С, 0°С, водонасыщение, сдвигоустойчивость коэффициента внутреннего трения, сдвигоустойчивость сцепления при сдвиге, трещиностойкость по пределу прочности на растяжение. При этом асфальтобетон приготовленный по заявляемому составу асфальтобетонной смеси соответствовал требованиям действующих нормативных документов ГОСТ 9128-2013.

Результаты испытаний приведены в таблицах 1 и 2. В таблице 1 приведены исследуемые составы асфальтобетонной смеси.

Таблица составов асфальтобетонных смесей.

Таблица 1

Состав
Асфальтобетона
Опытный
Образец
Содержание компонентов, мас.%
Песок
горный
дроблёный
Шлак
доменный
Битум нефтяной
дорожный
Купершлак Минеральный
порошок
из минералов
граната
По
прототипу
1 55 40 5
2 49,5 45 5,5
3 44 50 6
Заявляемый 1 40 5 50 5
2 45 5,5 43,5 6
3 50 6 37 7

Сравнительные характеристики физико-механических свойств заявляемой асфальтобетонной смеси и смеси по прототипу приведены в таблице 2.

Физико-механические свойства: пределы прочности, водонасыщение, сдвигоустойчивость коэффициента внутреннего трения, сдвигоустойчивость сцепления при сдвиге, трещиностойкость по пределу прочности на растяжение образцов из заявляемой асфальтобетонной смеси определяли при различных температурах: +50°С, +20°С, и 0°С.

Таблица 2

Наименование показателей Состав асфальтобетона, примеры
по ГОСТ
9128-2013
по
прототипу
из
предлагаемой смеси
1 2 3 1 2 3
1 Прочность при 20°С, R20 Мпа не менее, (кг/см3) 2,2
(22)
2,5
(25)
2,65
(26,5)
2,8
(28)
3,67
(36,7)
3,75
(37,5)
4,08
(40,8)
2 Прочность при 50°С, R50 Мпа не менее 1,2 2,39 2,61 2,8
3 Прочность при 0°С, R0 Мпа не более 11,0 9,2 8,7 8,3
4 Водонасыщение 1,5-4,0 1,82 1,7 1,55
5 Коэффициент водостойкости, не менее 0,9 0,95 0,95 0,95 0,96 1,0 1,0
6 Коэффициент водостойкости при
длительном водонасыщении
0,85 0,87 0,92 0,94
7 Остаточная пористость, % 2,5-5,0 2,5 2,5 2,0 2,58 2,56 2,5
8 Расход битума, % по массе 5,0-6,5 5 5,5 6 5 5,5 6
9 Морозостойкость В ГОСТе
не регламенти
руются
0,97 1,0 1,0 В ГОСТе
не регламентируются
10 Сдвигоустойчивость:
-коэффициент внутреннего трения, не менее
-сцепление при сдвиге при температуре 50°С, не менее
0,81
0,37
0,89
0,3
0,91
0,4
0,93
0,42
11 Трещиностойкость по пределу прочности на растяжение при расколе при температуре 0°С 3,5-6,0 5,03 4,6 4,2

По полученным опытным путем результатам, видно, что из трех испытываемых составов асфальтобетонной смеси, второй состав (пример №2), по сравнению с составом по прототипу, превышает показатель прочности R20 на 71%, а показатель водостойкости на 5%.

Анализ показателей заявляемой асфальтобетонной смеси и показателей по прототипу сравнивали с данными по ГОСТу 9128-2013, по приведенным в таблице 2 экспериментальным данным, видно, что заявляемый состав асфальтобетонной смеси (пример №2) позволяет повысить прочность асфальтобетона на 71% и увеличить показатель водостойкости на 5%, тем самым увеличив срок эксплуатации дорожного покрытия.

Асфальтобетонная смесь для дорожного строительства, содержащая шлак доменный, песок и битум нефтяной дорожный, отличающаяся тем, что в качестве песка используют отход медеплавильного производства - купершлак фракции 0,071-2,5 мм, минеральный порошок, содержащий 60-100% минералов гранатов, при следующем соотношении компонентов, мас.%:

шлак доменный фракции 5-40мм 45,0
битум нефтяной дорожный 5,5
купершлак – отход медеплавильного
производства фракции 0,071-2,5 мм 43,5
минеральный порошок, содержащий
60-100% минералов граната,
фракции 0,071-0,315 мм 6



 

Похожие патенты:

Изобретение относится к битумным эмульсиям, композитным структурам для дорожного покрытия, сформированным из них. Технический результат – улучшение физических свойств.

Изобретение может быть использовано при строительстве и ремонте подземных металлических сооружений и, предпочтительно, для промысловых, технологических и магистральных нефте-, газо-, продуктопроводов.
Изобретение относится к области строительства, а именно к составам строительных материалов, таких как мастики, которые могут быть использованы при ремонте кровельных покрытий, или для гидроизоляции труб.

Группа изобретений относится к каучуковому композиционному материалу для дорожных покрытий в форме частиц и способу его получения. Композиционный материал содержит каучук, по меньшей мере одну первую порошкообразную добавку, по меньшей мере одну вторую порошкообразную добавку и не более чем 15 мас.% по меньшей мере одного масла, представляющего собой нефтяной дистиллят тяжелой фракции, выбранный из битумов, которые имеют показатель пенетрации 100 или выше (согласно ASTM D5/D5M-13).

Изобретение относится к области дорожно-строительных материалов, в частности к получению смеси из старого асфальтобетона для использования при изготовлении, ремонте асфальтобетонного дорожного, тротуарного покрытия.
Изобретение относится к нефтехимии, а именно к модифицированию битумных вяжущих полимерами, и может быть использовано при получении асфальтобетонов, гидроизоляционных покрытий и мастик для строительных работ.

Изобретение относится к битумной композиции, содержащей смесь восков, состоящую из нефтяного сырого парафина и воска Фишера-Тропша, к применению смеси восков в битумных композициях, к применению битумной композиции в асфальтовых композициях, к асфальтовым композициям, содержащим битумную композицию, и к способу изготовления асфальтовых покрытий и конструкций из них.

Изобретение относится к дорожным строительным материалам, в частности к горячим мелкозернистым смесям, и может быть использовано в дорожном и аэродромном строительстве покрытий и оснований автомобильных дорог предприятий в I-III климатических зонах, характеризующихся холодным и влажным климатом.

Изобретение относится к области дорожно-строительных материалов, а именно к модифицирующим композициям для асфальтобетонных смесей при устройстве покрытий автомобильных дорог, мостов и путепроводов.
Изобретение относится к области строительных материалов для автомобильных дорог и может быть использовано при получении вяжущего вещества в асфальтобетоне для повышения физико-механических свойств.

Изобретение относится к битумным эмульсиям, композитным структурам для дорожного покрытия, сформированным из них. Технический результат – улучшение физических свойств.
Наверх