Способ диспергирования трудновоспламеняемых наночастиц

Изобретение относится к тепловым двигателям, в которых для производства механической работы используется теплота сгорания твердого топлива из трудновоспламеняемых наночастиц. Способ диспергирования трудновоспламеняемых наночастиц, состоящих из ядра и оболочки, заключается в том, что осуществляют смешение наночастиц с воздухом для транспортировки в камеру сгорания, в которой запускают процесс диспергации наночастиц с образованием вторичных кластеров и фрагментов оболочки, причем радиус вторичных кластеров не должен превышать 25 нм и определяется из заданного соотношения. Для запуска процесса диспергации наночастиц в камере сгорания их экспонируют рентгеновским излучением с определенными интенсивностью и длиной волны, при этом радиус наночастицы и толщина ее оболочки ограничены определенными соотношениями. Далее происходит самопроизвольная атомизация вторичных кластеров. Изобретение обеспечивает повышение энергетических характеристик и надежности работы двигателя.

 

Изобретение относится к тепловым двигателям, в которых для производства механической работы используется теплота сгорания твердого топлива, в частности топлива из трудновоспламеняемых наночастиц.

Известен способ организации рабочего процесса в двигателе (RU 2633730, 2017), характеризующийся тем, что порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе предварительно нагружают давлением вытеснения, нагревают и подают в камеру сгорания через форсунку. Недостатком способа является необходимость предварительной подготовки суспензии на основе сжиженных газов и порошков металлов и ограничения по времени хранения топлива.

Наиболее близким аналогом заявленного изобретения является способ диспергирования трудновоспламеняемых наночастиц бора (RU 2701249, 2019), состоящих из ядра и оболочки, характеризующийся тем, что осуществляют смешение наночастиц с воздухом для транспортировки в камеру сгорания, в которой запускают процесс диспергации наночастиц с образованием вторичных кластеров и фрагментов оболочки, причем радиус вторичных кластеров не должен превышать 25 нм и определяется из соотношения, после чего происходит самопроизвольная атомизация вторичных кластеров.

В известном способе для осуществления диспергации наночастиц используется быстрый нагрев в ударной волне, который приводит к энергетическим потерям на его организацию и возможным разрушающим последствиям воздействия ударной волны на конструкцию двигателя.

Кроме того, выбор материалов ядра и оболочки наночастиц ограничен бором и его соединениями.

Техническая проблема, решаемая заявляемым изобретением, заключается в возникновении энергетических потерь и возможном разрушении двигателя при организации ударной волны.

Технический результат, обеспечиваемый предлагаемым изобретением, заключается в повышении энергетических характеристик и надежности работы двигателя.

Технический результат достигается тем, что в способе диспергирования трудновоспламеняемых наночастиц, состоящих из ядра и оболочки, осуществляют смешение наночастиц с воздухом для транспортировки в камеру сгорания, в которой запускают процесс диспергации наночастиц с образованием вторичных кластеров и фрагментов оболочки, причем радиус r вторичных кластеров не должен превышать 25 нм и определяется из соотношения:

где:

R - радиус наночастицы;

с - скорость звука в ядре;

σ - коэффициент поверхностного натяжения ядра;

ρ - плотность ядра,

после чего происходит самопроизвольная атомизация вторичных кластеров, отличающийся тем, что для запуска процесса диспергации наночастиц в камере сгорания экспонируют их рентгеновским излучением с интенсивностью J и длиной волны λ, определяемыми из соотношений:

где:

σm - разрушающее механическое напряжение оболочки;

d - толщина оболочки;

ε0 - диэлектрическая проницаемость вакуума;

ε1 - диэлектрическая проницаемость оболочки;

ρв1 - удельное электрическое сопротивление оболочки;

с0 - скорость света в вакууме;

h - постоянная Планка;

е - заряд электрона,

при этом радиус R наночастицы и толщина d ее оболочки ограничены соотношениями:

где:

М0 - молярная масса материала оболочки;

Na - число Авогадро;

ρ0 - плотность материала оболочки.

Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как только совокупность всех действий и операций, составляющих изобретение, позволяет устранить недостатки, присущие известным способам.

Способ диспергирования трудновоспламеняемых наночастиц осуществляется следующим образом.

Исходные трудновоспламеняемые наночастицы могут быть получены по известному из уровня техники способу (Бакулин В.Н. и др., «Энергоемкие горючие для авиационных и ракетных двигателей», Москва, Физматлит, 2009).

В качестве наночастиц могут быть использованы наночастицы алюминия (Al) с ядрами в жидком состоянии, наночастицы бора (B) в аморфном состоянии или схожие с ними по энергетическим и физическим свойствам вещества.

Наиболее подходящим диаметром наночастиц является 10 нм - 1 мкм (Кулешов П.С., «О диспергировании наночастиц алюминия», «Горение и взрыв», 2019, Т. 12, №3, с. 118-127).

В качестве оболочки могут использоваться соединения, образующиеся естественным образом в воздухе (Al2O3, В2О3), или наносимые искусственно (В4С, TiB2, ZrB2, BN, HfB2), причем последние защищают ядра наночастиц от окисления в воздухе и дают энергетический выход при сжигании.

В качестве примера теплового двигателя для осуществления заявленного способа может использоваться воздушно-реактивный двигатель (ВРД), схема и описание работы которого приведены в патенте RU 2633730.

Осуществляют смешение трудновоспламеняемых наночастиц, состоящих из ядра и оболочки, с воздухом для транспортировки в камеру сгорания ВРД, в которой экспонируют их рентгеновским излучением с интенсивностью J и длиной λ волны, определяемыми из соотношений:

которое способствует запуску процесса диспергации наночастиц с образованием вторичных кластеров и фрагментов оболочки, причем радиус r вторичных кластеров не должен превышать 25 нм и определяется из соотношения:

В частности, длина волны, необходимая для диспергирования наночастиц бора и алюминия, составляет 3-8 нм. Такое излучение может быть получено в камере сгорания с использованием рентгеновской трубки или естественно-радиоактивного материала, распад которого сопровождается выделением короткоживущих радионуклидов и слабопроникающей радиацией, что вызывает фотоэффект, в процессе которого происходит зарядка и как следствие, кулоновский взрыв наночастицы.

При этом в камере сгорания возникает зона быстрой зарядки наночастиц и их диспергации с образованием вторичных кластеров, за которой вниз по потоку вдоль осевой координаты двигателя образуется зона атомизации вторичных кластеров, в которой происходит самопроизвольная атомизация вторичных кластеров, самовоспламенение и горение фрагментов оболочки в нагретом воздухе. Выпуск продуктов сгорания происходит через реактивное сопло ВРД. Раскаленные газообразные продукты сгорания формируют тягу в ВРД на стенках камеры сгорания и сопла.

Радиус R наночастицы и толщина d ее оболочки ограничены соотношениями:

Приведенные соотношения для J, λ, R и d следуют из известного уровня техники (Кулешов П.С., «Электрическая диспергация оксидированных наночастиц», Труды 62-ой Всероссийской научной конференции МФТИ, 18-24 ноября 2019, Аэрокосмические технологии, Москва-Долгопрудный-Жуковский. МФТИ. 2019. с. 307-308. ISBN978-5-7417-0729-6).

Ниже описаны примеры использования предложенного способа.

Предварительно были получены наночастицы алюминия и бора с радиусом

R ~ 100 нм

и толщиной оболочки

d ~ 2 нм.

По проведенным оценкам при реализации способа, на диспергацию одной наночастицы алюминия радиусом 100 нм необходима энергия импульса

~ 10-13 - 10-12 Дж

рентгеновского излучения, или (с учетом коэффициента полезного действия рентгеновской трубки)

~ 10-11 Дж

подводимой энергии к трубке, а при сжигании наночастицы в воздухе выделяется

~ 10-10 Дж.

Для диспергации одной наночастицы бора с таким же радиусом 100 нм необходима энергия импульса

~ 10-20 - 10-18 Дж,

или (с учетом коэффициента полезного действия рентгеновской трубки)

~ 10-18 - 10-16 Дж

подводимой энергии к трубке.

При этом при сжигании наночастицы бора в воздухе также выделяется

~ 10-10 Дж.

Таким образом, заявленный способ диспергирования трудновоспламеняемых наночастиц обеспечивает значительное снижение энергетических потерь для наночастиц алюминия и бора, что подтверждает достижение заявленного технического результата - повышение энергетических характеристик и надежности работы двигателя.

Дополнительным преимуществом заявленного изобретения является расширение диапазона материалов ядра и оболочки наночастиц.

Способ диспергирования трудновоспламеняемых наночастиц, состоящих из ядра и оболочки, характеризующийся тем, что осуществляют смешение наночастиц с воздухом для транспортировки в камеру сгорания, в которой запускают процесс диспергации наночастиц с образованием вторичных кластеров и фрагментов оболочки, причем радиус r вторичных кластеров не должен превышать 25 нм и определяется из соотношения:

где:

R - радиус наночастицы;

с - скорость звука в ядре;

σ - коэффициент поверхностного натяжения ядра;

ρ - плотность ядра,

после чего происходит самопроизвольная атомизация вторичных кластеров, отличающийся тем, что для запуска процесса диспергации наночастиц в камере сгорания экспонируют их рентгеновским излучением с интенсивностью J и длиной λ волны, определяемыми из соотношений:

где:

σm - разрушающее механическое напряжение оболочки;

d - толщина оболочки;

ε0 - диэлектрическая проницаемость вакуума;

ε1 - диэлектрическая проницаемость оболочки;

ρв1 - удельное электрическое сопротивление оболочки;

с0 - скорость света в вакууме;

h - постоянная Планка;

e - заряд электрона,

при этом радиус R наночастицы и толщина d ее оболочки ограничены соотношениями:

где:

M0 - молярная масса материала оболочки;

Na - число Авогадро;

ρ0 - плотность материала оболочки.



 

Похожие патенты:

Изобретение относится к ракетной технике, в частности к способам работы детонационных ракетных двигателей. Способ заключается в том, что твердое горючее и твердый окислитель размещают в отдельных газогенераторах, осуществляют нагрев и газификацию твердого горючего и твердого окислителя при помощи соответствующих дополнительных зарядов твердого топлива с низкой скоростью горения.

Ионный ракетный двигатель содержит соединенные между собой и расположенные соосно камеру сгорания, содержащую головку с форсуночной плитой для распыла компонентов топлива и цилиндрическую часть, имеющую на плите форсунки горючего и окислителя, к которой присоединен магнитный ускоритель плазмы, и далее - сверхзвуковое газодинамическое сопло с сужающейся и расширяющейся частями, по меньшей мере один запальник и коронирующий электрод.

Изобретение относится к ракетной технике и может быть использовано при создании сопла переменной степени расширения в многорежимном ракетном двигателе на твердом топливе (РДТТ).

Плазменный ракетный двигатель содержит соединенные между собой и расположенные соосно камеру сгорания, состоящую из камеры воспламенения и сжигания компонентов топлива горючего и окислителя и имеющую форсунки подачи горючего и окислителя и расширяющуюся торовую часть, к которой присоединен магнитный ускоритель плазмы, и сверхзвуковое газодинамическое сопло с сужающейся торовой и конической расширяющейся частями.

Изобретение относится к жидкостным ракетным двигателям. Система (22) управления потоком содержит сеть (34) топливных каналов, содержащую первую (36) и вторую (38) части сети, расположенные друг относительно друга с возможностью параллельного протекания по ним потоков.

Способ продувки промежуточной полости турбонасосного агрегата относится к машиностроению, преимущественно к подаче топлива или окислителя в двигатель внутреннего сгорания и предназначен как для транспортных средств, так и стационарных энергетических установок.

Изобретение относится к машиностроению, а именно к корпусам ракетных двигателей на твердом топливе, и может быть использовано при создании твердотопливных двигателей ракет.

Изобретение относится к теплотехнике и может быть, использовано в вакууме для теплоизоляции ракетных двигателей малой тяги, а также может быть использовано в технике низких температур.

Изобретение относится к ракетной технике и может быть использовано в ракетных двигателях твердого топлива, в которых необходимо развернуть газовый поток внутри камеры сгорания на угол более 90°, в том числе в ракетном двигателе разделения двигательной установки системы аварийного спасения космонавтов.

Изобретение относится к ракетной технике и может быть использовано при создании ракетных двигателей, в частности сопел большой степени расширения с телескопически складываемым раструбом.

Изобретение относится к наноэлектронике и может быть использовано при создании логических интегральных схем с элементами нанометровых размеров. Предложен наноразмерный логический инвертор для цифровых устройств, включающий подключаемые к источнику напряжения параллельно расположенные сверхпроводящие нанопровода, содержащие резистивные участки, при этом он выполнен из двух параллельно размещенных нанопроводов, содержащих резистивные участки, смещенные относительно друг друга по длине, и второй провод содержит суженный участок, расположенный вблизи резистивного участка первого провода, при этом сопротивление резистивного участка второго провода выбирают из условия протекания в нем тока меньше критического для узкого участка нанопровода при подаче опорного напряжения и выделения на нем достаточного количества тепла, чтобы инициировать переход в нормальное состояние узкого участка соседнего нанопровода другого логического элемента цифрового устройства, но недостаточного для этого при переходе суженного участка второго провода в нормальное состояние.
Наверх