Композиционный материал с микрокапсулированным огнетушащим веществом

Изобретение относится к автономным средствам пожаротушения, не требующим применения автоматизации и участия человека. Композиционный материал содержит следующие компоненты, мас.%: полимерная матрица - нитроцеллюлоза марки коллоксилин с содержанием азота 10,7-12,2% - 20-50; микрокапсулы с ядром из огнетушащего вещества - 50-80; стабилизатор - 1-2; пластификатор - 0-25. В качестве ядра из огнетушащего вещества композиционный материал содержит жидкие или газообразные галогенсодержащие углеводороды, например, 2-дибромгексафторпропан, 1,4-дибромоктафторбутан, 1,1,2,3,3,3-гептафторпропан, октофторциклобутан. В качестве стабилизатора композиционный материал содержит дифенилметан, централиты, а в качестве пластификатора - дибутилфталат. Изобретение позволяет повысить эффективность пожаротушения очагов возгорания в защищаемых объемах на более ранних стадиях, сохранить работоспособность изделия в условиях повышенной влажности и уменьшить дымообразование. 4 з.п. ф-лы, 4 табл., 4 пр.

 

Область техники

Изобретение относится к автономным средствам пожаротушения, а именно к полимерным композиционным материалам, содержащим огнетушащее вещество в форме микрокапсул и предназначенным для создания автономных устройств тушения огня, не требующих применения автоматизации и участия человека.

Предшествующий уровень техники

Принцип действия микрокапсулы основан на импульсном (взрывоподобном и/или ударном) выбросе инкапсулированного в ядре микрокапсулы термоактивируемого огнетушащего вещества (Термо ОТВ) в зону активного горения при достижении и/или превышении в защищаемом объеме температуры активации. Порошкообразная форма позволяет использовать их в качестве активного наполнителя в различных конструкционных материалах, покрытиях и других изделиях, обеспечивающих огнетушащую защиту различных объектов, подверженных риску возгорания.

Из информационных источников известны огнетушащие изделия (огнегасящие изделия), созданные с применением термо ОТВ и/или составов на основе микрокапсулированных и гранулированных огнетушащих веществ (ОТВ). В состав полимерной матрицы вводят микрокапсулы с ядром из огнетушащего вещества (огнегасящего агента), в качестве которого используют жидкие или газообразные галогенсодержащие углеводороды. В качестве жидких галогенсодержащих углеводородов могут быть использованы, например, 2-йодгептафторпропан, 1,1,2,2-тетрафтордибромэтан, перфтор(этил-изопропилкетон), 1,2-дибромгексафторпропан, 1,4-дибромоктафторбутан, 1,1,2,3,3,3-гептафторпропан, октофторциклобутан.

Эффект тушения огня такими материалами достигается в результате вскрытия микрокапсул с ОТВ при нагреве в результате огневого воздействия. Попадая в очаг возгорания, молекулы ОТВ распадаются с образованием свободных радикалов, обрывающих кинетические цепи процесса горения, прекращая его развитие. Кроме того, продукты термодеструкции дополнительно обеспечивают изоляцию очага возгорания от воздуха и препятствуют повторному возгоранию.

Автономные средства пожаротушения рассматриваемого типа чаще всего представляют собой полимерную матрицу, наполненную теми или иными микрокапсулами с огнетушащими агентами, оформленные в виде изделий, удобных к применению для защиты конкретных объектов. Наиболее часто такие материалы применяются в виде пластин или шнура.

Так, в патенте RU 2389525, A62D 1/00, опубл. 20.05.2010, описано применение микрокапсулированных в двойную оболочку из полисилоксана и желатина бромалканов, заключенных в эпоксидную матрицу.

В WO 2012/177181 описан материал, представляющий собой эпоксидную матрицу, наполненную микрокапсулированным перфторэтилизопропилкетоном, или дибромметаном, или их смесями с другими ОТВ, где для стабилизации микрокапсул используется монтмориллонит.

В заявке на изобретение RU 2012142459, A62D 1/00, опубл. 10.04.2014, для повышения эффективности срабатывания пластин из материала на основе полисилоксановой матрицы и микрокапсулированных огнегасящих агентов предложено окрашивать поверхности в черный цвет с целью увеличения коэффициента поглощения ими лучистой энергии.

В патенте RU 2631868, C08J 9/34, опубл. 27.09.2017, с этой же целью предложено вводить в состав материала алюминиевую пудру для увеличения его теплопроводности и, соответственно, скорости прогрева.

Все эти приемы несколько уменьшают время тушения возгорания, однако эти материалы и изделия их них следует отнести к пассивно активирующимся, в которых выделение ОТВ происходит не одновременно, а по мере прогрева изделия из такого материала..

В заявке на изобретение RU 2014145602, A62D 1/06, опубл. 10.06.2016, заявлен огнегасящий полимерный композиционный материал, представляющий собой полисилоксановую полимерную матрицу, наполненную микрокапсулированным огнегасящим агентом, катализатором горения и окислителями - перхлоратом и нитратом аммония, которые при контакте с огнем, разлагаются с выделением активного кислорода, провоцирующего медленное сгорание полимерного связующего, при котором происходит ускоренное вскрытие микрокапсул. Композиционный материал формуют в виде шнура путем продавливания на подложку, имеющую канавки Г-образной формы.

Известен патент RU 2631867 C08J 9/34, опубл. 27.09.2017, шнур для пожаротушения и способ его изготовления. Шнур выполнен на основе полимерного композиционного материала, преимущество которого по отношению к предыдущему изобретению заключаются в применении катализатора горения - ферроцена, что позволило снизить количество окислителей и, соответственно, токсичных и коррозионно активных продуктов разложения, в том числе хлора и его производных.

К недостаткам перечисленных изделий следует отнести механизм их срабатывания по типу огнепроводного шнура, когда горение силоксановой матрицы происходит с какой-то конечной, не отмеченной в изобретениях, скоростью. В сумме, учитывая время до начала активации горения шнура, защищаемый объект испытывает достаточно длительное пламенное воздействие, что может приводить к повреждению защищаемого оборудования, кроме того, имеются и другие недостатки:

- температурный интервал вскрытия микрокапсул с ОТВ составляет 120-150°C, а для активации термического разложения нитратов и перхлоратов с выделением кислорода необходимо зонально нагреть материал до температуры выше 330°C, соответственно, основная масса микрокапсул будет срабатывать до начала активного горения матрицы по механизму пассивной термоактивации;

- при разложении нитратов выделяется активный кислород, который поддерживает не только горение связующего, но и самого очага возгорания, препятствуя его блокированию;

- эффект ускорения газовыделения по механизму, заявленному в патенте, существенно снижается при нахождении во влажной атмосфере, поскольку силиконовые полимеры обладают наибольшей диффузионной проницаемостью по сравнению с другими полимерами, в том числе и по отношению к водяным парам. Соответственно, при длительном нахождении во влажной атмосфере окислители увлажняются, теряют свою активность, а сам материал переходит в разряд пассивно термоактивируемых. Особенно ярко это может проявляться при эксплуатации оборудования, расположенного на открытом воздухе, особенно в условиях тропического климата и в условиях возможного образования конденсата.

Наиболее близким аналогом для заявляемого изобретения является композиционный материал, известный из патента RU 2686714, A62D 1/00 опубл. 30.04.2019, в котором микрокапсулы с огнегасящим агентом смешивают с окислителями (нитрат бария или нитрат аммония), цементатором (крахмал, декстрин), пластификатором и формируют микрогранулы. Выделение активного кислорода при термическом разложении нитратов провоцирует сгорание цементатора, вследствие чего происходит вскрытие микрокапсул и залповый выброс огнегасящих веществ в защищаемый объем, причем процесс происходит по цепному принципу.

Такой материал обладает большей эффективностью, чем изобретения по заявке RU 2014145602 и патенту RU 2631867 с матрицей из силиконовых полимеров. Однако, несмотря на более высокую эффективность, данный материал обладает существенным недостатком, связанным с высокой гигроскопичностью веществ (крахмал, декстрин), входящих в его состав. Изделия с таким материалом перестают срабатывать с нужной динамикой и переходят в разряд пассивно активирующихся даже при кратковременной выдержке в атмосфере с влажностью более 85%, что существенно снижает эффективность его эксплуатации в оборудовании, установленном на открытом воздухе, особенно условиях тропического климата или возможного образования конденсата.

С технической точки зрения описанный в патенте способ гранулирования (матричное формование), основанный на простом смешении компонентов рецептуры с последующим механическим воздействием на субстанцию при формировании гранул и их сепарации по размерам, принципиально не может обеспечить достаточную изоляцию цементатора от паров воды. Изделия с таким материалом перестают срабатывать с нужной динамикой и переходят в разряд пассивно активирующихся даже при кратковременной выдержке в атмосфере с влажностью более 85%, что существенно снижает их эффективность при размещении в оборудовании, расположенного на открытом воздухе, особенно в условиях тропического климата и в условиях возможного образования конденсата. Кроме того, при сгорании такой композиции выделяется большое количество аэрозольных частиц, которые оседают на защищаемом оборудовании и за счет увеличения токов утечки могут выводить его из строя.

Раскрытие изобретения

Задачей создания настоящего изобретения является разработка нового композиционного материала с микрокапсулированным ОТВ, свободного от недостатков прототипа.

Технический результат изобретения заключается в повышении эффективности пожаротушения очагов возгорания в защищаемых объемах на более ранних стадиях, сохранении работоспособности изделия в условиях повышенной влажности и уменьшения дымообразования.

Поставленная задача была решена созданием композиционного материала с микрокапсулированным ОТВ, включающего полимерную матрицу, наполненную микрокапсулами с ядром из огнетушащего вещества, стабилизатор и пластификатор, при этом в качестве полимерной матрицы используют нитроцеллюлозу марки коллоксилин с содержанием азота от 10,7% до 12,2% при следующем соотношении компонентов, мас.%: полимерная матрица - нитроцеллюлоза марки коллоксилин с содержанием азота от 10,7% до 12,2% - 20-50, микрокапсулы с ядром из огнетушащего вещества - 50-80, стабилизатор - 1-2, пластификатор - 0-25.

Кроме того, в качестве ядра огнетушащего вещества могут быть использованы жидкие или газообразные галогенсодержащие углеводороды.

Допускается в качестве жидких или газообразных галогенсодержащих углеводородов использовать, 2-йодгептафторпропан, 1,1,2,2-тетрафтордибромэтан, перфтор(этил-изопропилкетон), 1,2-дибромгексафторпропан, 1,4-дибромоктафторбутан, 1,1,2,3,3,3-гептафторпропан, октофторциклобутан.

Кроме того, в изобретении в качестве стабилизатора допускается использовать дифенилметан, централиты.

Кроме того, в изобретении в качестве пластификатора допускается использовать дибутилфталат.

При соприкосновении с пламенем происходит возгорание НЦ и ее беспламенное горение за счет кислорода, входящего в состав самой нитроцеллюлозы. При этом скорость распространения возгорания по поверхности материала на порядок выше ее прогорания внутрь материала. Это приводит к практически одновременному вскрытию микрокапсул с ОТВ по всему материалу. Горение матрицы сопровождается ее полной деструкцией, что обеспечивает беспрепятственный залповый выброс огнетушащего вещества в очаг возгорания, его локализацию и тушение.

Предлагаемый композиционный материал обладает повышенной эффективностью тушения:

- за счет формирования залпового одномоментного выброса всего огнегасящего агента, что обеспечивает быстрое подавление очага возгорания на более ранней стадии,

- за счет выделения значительного количества нейтральных газов, дополнительно блокирующих очаг возгорания,

- материал более устойчив к влаге, так как в нем применены компоненты с низким влагопоглощением.

Применение такого материала в различных автономных устройствах пожаротушения значительно сокращает время огневого воздействия на оборудование в защищаемом объекте, обеспечивая его сохранность

Отличительные признаки изобретения проявили в заявляемой совокупности существенных признаков новые свойства, явным образом не вытекающие из уровня техники в данной области и неочевидные для специалиста.

Идентичной совокупности признаков не обнаружено в патентной и научно-технической литературе.

Следует учесть, что при создании настоящего изобретения возможности повышения огнетушащей способности микрокапсулированного ОТВ далеко не исчерпаны.

Осуществление изобретения

На сегодняшний день актуальной задачей является разработка материалов, обеспечивающих быстрое вскрытие микрокапсул с ОТВ и его транспортировку в зону возгорания. В известных материалах с микрокапсулированным ОТВ, при повышении температуры происходит медленное выделение ОТВ, поскольку микрокапсулы вскрываются не одномоментно, а последовательно по мере прогрева изделия, что приводит к значительному увеличению времени подавления возгорания.

Авторами было предложено новое, не известное ранее, применение нитроцеллюлозы (НЦ) марки коллоксилин с содержанием азота от 10,7% до 12,2%, традиционно использующейся для изготовления эмалей, лаков и как конструкционный материал, в качестве термоактивирующей полимерной матрицы микрокапсулированного ОТВ.

Следует отметить, что в изобретении был использован основной недостаток НЦ марки коллоксилин, ограничивающий его применение в качестве конструкционного материала - ее высокая горючесть, для получения положительного эффекта, а именно для термоактивации микрокапсул с ОТВ. При этом при наличии инертных наполнителей, НЦ горит в беспламенном низкотемпературном режиме.

Дополнительным фактором, обеспечивающим повышенную эффективность предлагаемого композиционного материала, является выделение при сгорании нитроцеллюлозы значительного количества не поддерживающих горение газообразных продуктов, в среднем 10 л на 10 г нитроцеллюлозы, основными из которых являются азот (45%), углекислый газ (13,3%), окись углерода (31,6%) и вода, которые дополнительно блокируют доступ кислорода и осуществляют быструю доставку ОТВ к очагу возгорания.

Нитроцеллюлоза - продукт этерификации целлюлозы с нитрующей смесью (смесь азотной и серной кислот). Это один из первых искусственных полимеров. Применение нитроцеллюлозы широко и разнообразно (https://ru.wikipedia.org/wiki/Динитроцеллюлоза).

Растворы нитроцеллюлозы марки коллоксилин с содержанием азота 10,7%-12,2% обладают пленкообразующими свойствами, поэтому ранее использовались как подложка фото- и кинопленки. Также растворы применяют для производства нитроцеллюлозных мембран для иммобилизации белков или для гибридизации нуклеиновых кислот, например, при Саузерн-блоттинге.

Основным применением НЦ сейчас является ее использование в качестве пленкообразующей основы нитроцеллюлозных лаков, красок, эмалей. Целлулоид, который представляет собой пластмассу из нитроцеллюлозы, пластификатора и красителя (https://ru.wikipedia.org/wiki/Целлулоид), используют для изготовления большого ассортимента изделий. Не смотря на легкость формирования изделий и эстетичность внешнего вида, в настоящее время от нитроцеллюлозы повсеместно отказываются в связи с ее высокой горючестью и переходят на практически негорючий ацетат целлюлозы.

Выбор в качестве вещества матрицы - горючего вещества нитроцеллюлозы марки коллоксилин с содержанием азота от 10,7% до 12,2% обусловлен несколькими факторами, а именно:

- технической доступностью, промышленно выпускается коллоксилин лаковый по ГОСТ Р 50461-92,

- верхний предел по содержанию азота ограничен концентрацией нитрогрупп, при которой НЦ переходит в категорию взрывчатых веществ,

- нижний предел ограничен техническими условиями, что не исключает возможности использования нестандартного продукта, если его применение не ограничено растворимостью в применяемых растворителях, обеспечивающих возможность образовывать однородный раствор для диспергирования микрокапсул.

Неограниченная растворимость НЦ в таких относительно полярных растворителях, как кетоны, сложные эфиры и совместимость с такими пластификаторами, как дибутилфталат, позволяет получать вязкие растворы, пригодные для наполнения микрокапсулами в широком диапазоне - до 80% вес (по отношению к НЦ), при этом нет ограничений по применению других растворителей, пластификаторов и стабилизаторов, что не затрагивает сути данного изобретения.

Изменяя вязкость исходного раствора НЦ, можно широко регулировать и свойства наполненного микрокапсулами состава композита, делая его пригодным для формирования различных изделий - пластин, гранул для заполнения пожаротушащих изделий типа шнура или пожаротушащих гранат.

Композиционный материал с микрокапсулированным ОТВ состоит из полимерной матрицы, микрокапсул с ядром из огнетушащего вещества, стабилизатора и пластификатора.

В качестве полимерной матрицы используют нитроцеллюлозу марки коллоксилин с содержанием азота от 10,7% до 12,2%, при следующем соотношении компонентов, мас.%: полимерная матрица - нитроцеллюлоза марки коллоксилин с содержанием азота от 10,7% до 12,2% - 20-50; микрокапсулы с ядром из огнегасящего вещества - 50-80; стабилизатор - 1-2; пластификатор - 0-25.

В состав полимерной матрицы вводят микрокапсулы с ядром из ОТВ, в качестве которого используют жидкие или газообразные галогенсодержащие углеводороды. В качестве жидких галогенсодержащих углеводородов могут быть использованы, например, 2-йодгептафторпропан, 1,1,2,2-тетрафтордибромэтан, перфтор(этил-изопропилкетон), 1,2-дибромгексафторпропан, 1,4-дибромоктафторбутан, 1,1,2,3,3,3-гептафторпропан, октофторциклобутан. Для обеспечения стабильности композитов с матрицей из НЦ при эксплуатации при повышенных температурах и прямом доступе атмосферной влаги в составе используют известные стабилизаторы, такие как дифенилметан, центролиты и др. Для регулировки эластичности материала используют пластификатор, например, дибутилфталат или полимерные пластификаторы типа поливинилбутираля.

Способ приготовления композиционного материала с микрокапсулированным ОТВ включает следующую последовательность операций.

Готовят 40-60%-ный раствор нитроцеллюлозы марки коллоксилин с содержанием азота от 10,7% до 12,2% в ацетоне, или в этилацетате, или в бутилацетате, или в смеси указанных растворителей. В приготовленный раствор вводят заданные количества стабилизатора (например, дифенилметан), пластификатора (например, дибутилфталат) и микрокапсул с ОТВ (например, перфтор (этил-изопропилкетон) в оболочке из резорцино-мочевино-формальдегидной смолы).

Из полученной композиции изготавливают огнетушащие изделия: пластины, шнуры, накидки и т.п. Удаление из готовых изделий легко летучих растворителей, содержащихся в относительно небольшом количестве, не вызывает каких-либо технических трудностей.

Применение микрокапсул с оболочкой из резорцино-мочевино-формальдегидной смолы не ограничивает применения микрокапсулированных ОТВ в оболочке из других полимерных материалов, устойчивых в используемых растворителях.

При сгорании НЦ микрокапсулы с ОТВ вскрываются практически одновременно. Происходящее при этом деструктивное разрушение матрицы обеспечивает беспрепятственный залповый выброс ОТВ в защищаемый объем. Попадая в очаг возгорания, молекулы ОТВ распадаются с образованием свободных радикалов, обрывающих кинетические цепи процесса горения, прекращая его развитие в течение нескольких секунд. Продукты термодеструкции, кроме того, обеспечивают изоляцию очага возгорания от воздуха и препятствуют повторному возгоранию.

Кроме того, такая матрица способна самостоятельно, после огневого на нее воздействия, поддерживать горение композита с микрокапсулами ОТВ и обеспечивать быстрое подавление очага возгорания в защищаемом объеме

Дополнительным фактором, обеспечивающим повышенную эффективность композиционного материала, является выделение при сгорании нитроцеллюлозы значительного количества газообразных продуктов, основными из которых являются азот (45%), углекислый газ (13,3%), окись углерода (31,6%) и вода, которые дополнительно блокируют доступ кислорода и осуществляют быструю доставку ОТВ к очагу возгорания.

При сгорании 10 г нитроцеллюлозы в защищаемый объем выделяется примерно 10 л не поддерживающих горение газов и паров воды, которые, с одной стороны, обеспечивают быстрое распределение паров огнегасящего вещества по всему защищаемому объему и доставку его к очагу возгорания, а с другой - вытесняют воздух и дополнительно блокируют очаг возгорания от доступа кислорода.

Повышенная влагостойкость композиционного материала обеспечена его низким влагопоглощением. Из представленных в таблице 1 данных видно, что параметр влагопоглощения у НЦ меньше, чем у горючих компонентов прототипа, предлагаемых для провоцирования ускоренного вскрытия микрокапсул за счет сгорания полимерного связующего, что влияет отрицательно на время срабатывания прототипа.

При этом влагопоглощение НЦ носит адсорбционный характер, а крахмала (декстрина) - гидратационный. Поэтому увлажнение НЦ незначительно сказывается на горючести матрицы, а материалы с использованием крахмала перестают работать как термоактиваторы до его высыхания.

В таблицах 2-4 приведены результаты сравнительных испытаний наиболее распространенных автономных устройств пожаротушения (АУП) на основе микрокапсулированных ОТВ в сравнении с аналогичными изделиями изготовленными на основе предлагаемого термоактивирующего материала.

Испытания АУП «Пластина» проводили по методике ГОСТ Р 56459-2015 «Устройства пожаротушения автономные с применением термоактивируемых микрокапсулированных газовыделяющих огнетушащих веществ» в шкафу объемом 50 л на модельном очаге пожара класса В.

Из представленных в таблице данных очевидно, что время тушения очага возгорания АУП «Пластина», изготовленного на основе материала изобретения, существенно меньше, чем у аналогов и прототипа.

Испытания пожаротушащей способности АУП «Шнур» так же проводили по методике ГОСТ Р 56459-2015 в огневой камере большего объема - 200 л. Для проведения испытаний изготавливают шнур длиной 100 см и диаметром 8 мм. Шнур закрепляют на верхней стенке камеры. Результаты испытаний приведены в таблице 3.

Из представленных в таблице 3 данных, очевидно, что время тушения очага возгорания шнуром с предлагаемой активной термоактивирующейся матрицей меньше, чем у прототипа и практически полностью сохраняется работоспособность после длительной выдержке во влажной атмосфере.

Испытания АУП «Противопожарное полотно» проводили на образцах полотна размером 90×80 см. При этом масса композиционного материала на полотне, при ее наличии, составила 160-170 г. Испытания проводили на модельных очагах пожара класса А категории 0,1А и класса В категории 8В.

Модельный очаг пожара класса А категории 0,1А представляет собой деревянный штабель в виде куба, состоящего из деревянных брусков длиной 200 мм и сечением 40×40 мм, уложенных в шесть слоев по три штуки в слое. Бруски установлены на стальные уголки и бетонные (металлические) блоки.

Под штабелем размещают поддон с бензином АИ-92. Через 7 мин после поджига бензина, поддон убирают и приступают к тушению. Тушение проводят с помощью противопожарного полотна размером 90×80 см. При тушении с помощью ПП, содержащего композицию на основе микрокапсулированного ОТВ, количество композиции составляло 160-170 г на полотно.

При тушении модельный очаг пожара накрывают движением «от себя» рабочей стороной покрывала к очагу. Плотно прижимают покрывало со всех сторон штабеля, для минимизации доступа кислорода к модельному очагу. Через 10 мин или после визуально наблюдаемого окончания тушения модельного очага противопожарное полотно убирают и фиксируют:

- отсутствие повторных возгораний;

- результат тушения;

- отсутствие сквозных прогаров рабочей (и внешней) сторон покрывала.

Очаг считают потушенным, если в течение 1 мин не произошло его самовоспламенение.

Модельный очаг возгорания класса В категории 8В представляет собой круглый противень, изготовленный из листовой стали, диаметром 800 мм с высотой борта 150 мм. В противень заливают 5 л бензина АИ-92 и поджигают. Через 60 сек приступают к тушению. При тушении модельный очаг пожара накрывают движением «от себя» рабочей стороной покрывала к очагу. Прижимают покрывало со всех сторон противня, для минимизации доступа кислорода воздуха к модельному очагу.

После визуально наблюдаемого окончания тушения модельного очага противопожарное полотно убирают и фиксируют:

- отсутствие повторного воспламенения;

- результат тушения;

- отсутствие сквозных прогаров рабочей (и внешней) сторон покрывала.

Очаг считают потушенным, если в течение 1 мин не произошло его самовоспламенение.

Из представленных в таблице 4 данных, очевидно, что эффективность тушения очага возгорания ПП с предлагаемой активной термоактивирующей матрицей существенно выше, чем у аналогов.

Из представленных результатов видно, что применение композиционного материала с полимерной матрицей из НЦ позволяет существенно повысить эффективность автономных устройств пожаротушения наиболее распространенных типов.

Приведенные ниже примеры не ограничивают иные возможности осуществления изобретения.

Пример 1. 8 г нитроцеллюлозы растворяют в 10 г ацетона при комнатной температуре, добавляют 2 г дибутилфталата, 0,3 г цетролита и смешивают с 15 г микрокапсул с огнетушащим веществом (перфторэтилизопропилкетоном) в оболочке из резорцино-мочевино-формальдегидной смолы. Из полученной композиции изготавливают пластину путем нанесения через открытый трафарет сплошным слоем на подложку из полимерной пленки с липким слоем с последующей сушкой в вытяжном шкафу для удаления ацетона.

Пример 2. 10 г нитроцеллюлозы растворяют в 10 г ацетона. Добавляют 0,3 г центролита, 15 г микрокапсул огнетушащим веществом (перфторэтилизопропилкетоном) в оболочке из резорцино-мочевино-формальдегидной смолы и из полученной композиции методом экструзии изготавливают заготовки (гранулы) для шнура с последующим удалением из них растворителя.

Пример 3. 8 г нитроцеллюлозы растворяют в 10 г ацетона при комнатной температуре, добавляют 1 г дибутилфталата. 0,3 г цетролита и смешивают с 15 г микрокапсул с огнетушащим веществом (перфторэтилизопропилкетоном) в оболочке из резорцино-мочевино-формальдегидной смолы. Из полученной композиции изготавливают противопожарное полотно путем нанесения через открытый трафарет на подложку из стеклоткани с последующей сушкой в вытяжном шкафу для удаления ацетона.

Пример 4. В отличие от примеров 1-2 в качестве, по меньшей мере, одного из микрокапсулированных огнетушащих веществ использовались 2-йодгептафторпропан, 1,1,2,2-тетрафтордибромэтан, перфтор(этил-изопропилкетон), 1,2-дибромгексафторпропан, 1,4-дибромоктафторбутан, 1,1,2,3,3,3-гептафторпропан, октофторциклобутан.

Промышленная применимость

Применение нитроцеллюлозы в качестве полимерной матрицы в огнетушащем материале - новая область использования НЦ коллоксилин, при котором используется ее основной недостаток - а именно высокая горючесть. Применение НЦ в таком аспекте позволяет создать высокоэффективные средства тушения огня в ограниченных объемах, срабатывающие в автономном режиме без применения автоматики и участия человека при кратковременном непосредственном огневом воздействии на них.

1. Композиционный материал с микрокапсулированным огнетушащим веществом, содержащий полимерную матрицу, наполненную микрокапсулами с ядром из огнетушащего вещества, стабилизатор и пластификатор, отличающийся тем, что в качестве полимерной матрицы содержит нитроцеллюлозу марки коллоксилин с содержанием азота 10,7%-12,2%, при следующем соотношении компонентов, мас.%:

полимерная матрица - нитроцеллюлоза марки
коллоксилин с содержанием азота 10,7%-12,2% 20-50
микрокапсулы с ядром из огнетушащего вещества 50-80
стабилизатор 1-2
пластификатор 0-25.

2. Материал по п. 1, отличающийся тем, что в качестве ядра огнетушащего вещества используют жидкие или газообразные галогенсодержащие углеводороды.

3. Материал по пп. 1 и 2, отличающийся тем, что в качестве жидких или газообразных галогенсодержащих углеводородов используют 2-йодгептафторпропан, 1,1,2,2-тетрафтордибромэтан, перфтор(этил-изопропилкетон), 1,2-дибромгексафторпропан, 1,4-дибромоктафторбутан, 1,1,2,3,3,3-гептафторпропан, октофторциклобутан.

4. Материал по п. 1, отличающийся тем, что в качестве стабилизатора используют дифенилметан, централиты.

5. Материал по п. 1, отличающийся тем, что в качестве пластификатора используют дибутилфталат.



 

Похожие патенты:

Огнестойкий вязаный материал, имеющий толщину 0,08 мм или более, согласно методике по стандарту JIS L 1096-A (2010), и состоящий из пряжи, где пряжа содержит: неплавящееся волокно A, обладающее усадкой при высокой температуре, составляющей 3% или менее; и термопластичное волокно B, обладающее величиной LOI, составляющей 25 или более согласно JIS K 7201-2 (2007), и обладающее температурой плавления, более низкой, чем температура воспламенения неплавящегося волокна A; где пряжа обладает разрывным удлинением, превышающим 5%; и где в площади проекции раппорта огнестойкого вязаного материала доля площади, занимаемая неплавящимся волокном A, составляет 10% или более, а доля площади, занимаемая термопластичным волокном B, составляет 5% или более.
Изобретение относится к огнетеплозащитному материалу, который может использоваться в качестве противопожарных штор. Описан огнезащитный вспучивающийся материал, выполненный в виде ткани с нанесенным на нее полимерным покрытием из поливинилхлоридной композиции, включающей производное фосфорной кислоты и диоктилфталат, при этом композиция дополнительно содержит хлорпарафин, гидроксид алюминия, борат цинка и фосфорборсодержащий олигомер, в качестве производного фосфорной кислоты композиция содержит трихлорпропилфосфат, а в качестве ткани используют керамическую ткань при следующем массовом соотношении компонентов композиции, мас.ч.: поливинилхлорид 10,0, диоктилфталат 5,0, трихлорпропилфосфат 35,0, хлорпарафин 9,0-14,0, гидроксид алюминия 22,0, борат цинка 13,0, фосфорборсодержащий олигомер ФБО 1,0-6,0.
Изобретение относится к огнетеплозащитному материалу, который может использоваться в качестве противопожарных штор. Предложен огнезащитный вспучивающийся материал, выполненный в виде ткани с нанесенным на нее полимерным покрытием из поливинилхлоридной композиции, включающей производное фосфорной кислоты и диоктилфталат, при этом композиция дополнительно содержит хлорпарафин, гидроксид алюминия, борат цинка и фосфорборсодержащий олигомер, в качестве производного фосфорной кислоты композиция содержит трихлорпропилфосфат, а в качестве ткани используют базальтовую ткань при следующем массовом соотношении компонентов композиции, мас.ч.: поливинилхлорид 10,0, диоктилфталат 5,0, трихлорпропилфосфат 35,0, хлорпарафин 9,0-14,0, гидроксид алюминия 22,0, борат цинка 13,0, фосфорборсодержащий олигомер ФБО 1,0-6,0.
Изобретение относится к огнетеплозащитному материалу, который может использоваться в качестве противопожарных штор. Предложен огнезащитный вспучивающийся материал, выполненный в виде ткани из стекловолокна с нанесенным на нее полимерным покрытием из поливинилхлоридной композиции, включающей производное фосфорной кислоты и диоктилфталат, при этом композиция дополнительно содержит хлорпарафин, гидроксид алюминия, борат цинка и фосфорборсодержащий олигомер, а в качестве производного фосфорной кислоты композиция содержит трихлорпропилфосфат при следующем массовом соотношении компонентов, мас.ч.: поливинилхлорид 10,0, диоктилфталат 5,0, трихлорпропилфосфат 35,0, хлорпарафин 9,0-14,0, гидроксид алюминия 22,0, борат цинка 13,0, фосфорборсодержащий олигомер ФБО 1,0-6,0.
Изобретение относится к огнетеплозащитному материалу, который может использоваться в качестве противопожарных штор. Предложен огнезащитный вспучивающийся материал, выполненный в виде полиэфирной ткани с нанесенным на нее полимерным покрытием из поливинилхлоридной композиции, включающей трихлоралкилфосфат и наполнитель, при этом композиция дополнительно содержит хлорпарафин, диоктилфталат и фосфорборсодержащий олигомер, в качестве наполнителя композиция содержит гидроксид алюминия и борат цинка, а в качестве трихлоралкилфосфата - трихлорпропилфосфат при следующем массовом соотношении компонентов, мас.ч.: поливинилхлорид 10,0, диоктилфталат 5,0, трихлорпропилфосфат 35,0, хлорпарафин 9,0-14,0, гидроксид алюминия 22,0, борат цинка 13,0, фосфорборсодержащий олигомер ФБО 1,0-6,0.

Изобретение относится к области создания огнестойких текстильных материалов. Предложен способ придания огнестойкости текстильным материалам путем обработки последних огнезащитными препаратами-антипиренами.
Изобретение относится к огнестойким нетканым фильтрующим материалам, предназначенным для очистки от пыли и крупных раскаленных частиц горячих газов. Огнестойкий нетканый фильтрующий материал выполнен путем смешения волокон преокса и метаарамида в массовом соотношении компонентов, %: от 30/70 до 80/20 соответственно, скрепленных между собой иглопрокалыванием с последующим термическим уплотнением.

Изобретение относится к вспениваемой многокомпонентной композиции, образующей изолирующий слой, которая включает по меньшей мере один алкоксисиланфункциональный полимер с концевыми и/или расположенными вдоль полимерной цепи боковыми алкоксифункциональными силановыми группами общей формулы (I) , в которой R1 означает неразветвленный или разветвленный алкильный остаток с 1-16 атомами углерода, R2 означает неразветвленный или разветвленный алкильный остаток с 1-6 атомами углерода и m означает целое число от 0 до 2, по меньшей мере одну образующую изолирующий слой противопожарную добавку, смесь вспенивающих веществ и сшивающий агент, а также применение указанной композиции в качестве местного пеноматериала или для изготовления формованных изделий.

Группа изобретений относится к композиционному материалу, который может использоваться в различных сферах, где необходимо обеспечить защиту от внешних воздействующих факторов или есть риск воспламенения, разрушения, потери стойкости или функционального поражения, а также поглощение электромагнитных волн, например, в строительстве, промышленности, транспорте, атомной промышленности, военной области, авиационной и космической областях, и способу его получения.
Изобретение относится к способу изготовления звуко- и/или теплоизоляционного элемента с использованием вспениваемых и/или предварительно вспененных полимерных частиц, а также к звуко- и/или теплоизоляционному элементу.

Изобретение относится к химии полимеров и может быть использовано в медицине для изготовления аппаратов внешней фиксации при лечении пациентов в условиях хирургических и травматолого-ортопедических стационаров.
Наверх