Способ определения реологических характеристик полимерного порохового лака

Изобретение относится к области производства сферических порохов по водно-дисперсионной технологии и предназначено для оценки реологических характеристик порохового лака на фазе формирования гранул. Определяют реологические свойства полимерного порохового лака на штативном пенетрометре. В отобранную пробу лака, имеющего концентрацию 10-50% при температуре 20-68°С, находящуюся в цилиндрической чаше глубиной до 90 мм, погружают под действием силы тяжести всю измерительную систему. Измерительная система состоит из стержня с упором и взаимозаменяемых инденторов, а именно сферы или конуса, или перфорированного диска, накручивающихся на нижнюю часть стержня в зависимости от вязкости порохового лака. Измеряют глубину погружения системы, масса которой находится в пределах от 24,8 до 51,4 г, за фиксированное время погружения, равное 15 с. Обеспечивается возможность экспрессно корректировать дозировку растворителя непосредственно в процессе приготовления лаков, обеспечивая стабильность выхода целевой фракции пороха за счет достижения аналогичных реологических характеристик лака от операции к операции независимо от вида сырья. 5 ил., 2 табл.

 

Изобретение относится к области производства сферических порохов (СФП) по водно-дисперсионной технологии и предназначено для оценки реологических характеристик порохового лака на фазе формирования гранул.

В настоящее время не существует численного способа определения реологических характеристик пластифицированной полимерной пороховой массы на фазе формирования гранул без прерывания операции лакообразования.

Наиболее распространенный способ определения технологических свойств порохового лака заключается в субъективной оценке его качества по способности деформироваться, которая фиксируется тактильно. К недостаткам данного способа можно отнести высокие требования к квалификации исполнителей, отсутствие стандартизации испытаний и численного определения реологических характеристик, что приводит к значительным колебаниям выхода целевой фракции пороха при аналогичных гидродинамических условиях диспергирования.

Наиболее близким к заявляемому техническому решению по совокупности существенных признаков (прототипом) является способ погружения индентора на глубину 10 мм за 5 с на балансирном конусе Васильева (ГОСТ 5180-2015. Грунты. Методы лабораторного определения физических характеристик).

Недостатками прототипа (фиг. 1) являются фиксированный предел измерений глубины погружения индентора в исследуемый материал равный 10 мм в силу постоянного веса (76 г) коромысла с балансирами, использование конического индентора диаметром 14 мм, измерительной чаши диаметром 49 мм, что применимо только для консистентных полимерных масс концентрации 40÷50%, а также проведение измерений только при комнатной температуре из-за отсутствия теплоизоляционного слоя у чаши.

Задачей заявленного технического решения является расширение температурного и концентрационного диапазонов измерений полимерных пороховых лаков, глубины погружения индентора в отобранную пробу лака на штативном пенетрометре, осуществление дискретного контроля за реологическими характеристиками полимерных пороховых лаков без прерывания операции лакообразования при изготовлении продуктов по водно-дисперсионной технологии, обеспечение стабильности выхода целевой фракции пороха.

Технический результат достигается тем, что способ определения реологических свойств полимерного порохового лака на штативном пенетрометре, характеризующийся тем, что в отобранную пробу лака, имеющего концентрацию 10-50% при температуре 20-68°С, находящуюся в цилиндрической чаше глубиной до 90 мм, погружают под действием силы тяжести всю измерительную систему, состоящую из стержня с упором и взаимозаменяемых инденторов, а именно, сферы или конуса или перфорированного диска, накручивающихся на нижнюю часть стержня в зависимости от вязкости порохового лака, измеряют глубину погружения системы, масса которой находится в пределах от 24,8 до 51,4 г, за фиксированное время погружения, равное 15 с.

Основные технические характеристики измерительных систем штативного пенетрометра представлены в таблице 1.

Предлагаемый способ определения глубины погружения измерительной системы на штативном пенетрометре (фиг. 2) осуществляется следующим образом.

Перед проведением измерений проводятся подготовительные операции в следующей последовательности, представленной на фиг 2.:

1. Подготавливается прибор к проведению измерений.

1.1. Устанавливается штатив 8 на стол 9.

1.2. Устанавливается подставка 10 на столе 9 по уровню при помощи регулирующих ножек.

1.3. Корпус 1 с измерительной линейкой 2 фиксируется лапкой 7 на штативе 8.

1.4. В корпус 1 устанавливается стержень 4 с упором 5 и индентором 6, проводится фиксация стержня 4 винтами 3 в корпусе 1.

1.5. Выбирается тип измерительной системы в зависимости от вязкости порохового лака. Применение каждого типа измерительной системы обусловлено консистенцией порохового лака, концентрация которого варьируется модулем по растворителю. Для высококонцентрированных пороховых лаков используются конические инденторы, для концентрированных - конические и сферические инденторы, для слабоконцентрированных - сферические, дискообразные.

2. Далее проводится подготовка полимерного порохового лака к проведению измерений.

2.1. Отобранная проба порохового лака из реактора формирования, на стадии лакообразования загружается в предварительно прогретую горячей водой с температурой Т=80-90° в течение 20 минут цилиндрическую чашу 11 со слоем теплоизоляционного материала 12 толщиной 16 мм и кожухом 13 до метки 14, нанесенной на ее внутренней поверхности.

2.2. Поверхность порохового лака выравнивается придавливающим устройством в уровень с меткой чаши 11, чаша закрывается крышкой 15 с отверстием (фиг. 3а).

2.3. Чаша 11 с испытуемым пороховым лаком устанавливается на подставку.

3. При выполнении измерений проводятся следующие операции:

3.1. Отворачивается винт 3 корпуса 1, и стержень 4 с упором 5 и индентором 6 подносится к поверхности порохового лака, представленной на фиг. 3 б. После этого стержень 4 закрепляется винтом 3 в корпусе 1 аппарата.

3.2. Далее винт 3 отворачивается и стержень 4 с упором 5 и индентором 6 под действием собственного веса погружается в отобранную пробу порохового лака в течение 15 с. По измерительной линейке 2 определяется глубина (h) погружения стержня с упором и индентором в пороховой лак за фиксированное время (t) 15 с (фиг. 3 в), которая напрямую зависит от консистенции порохового лака. В отверстие крышки 15 вставляется термометр и замеряется температура лака. Во время проведения операции лакообразования при формировании гранул СФП измерения глубины погружения измерительной системы в пороховой лак и температуры лака проводятся 3-6 раз через фиксированные промежутки времени. Перед каждым измерением цилиндрическая чаша 11 прогревается горячей водой с Т=80-90°С.

Сравнительные характеристики разработанного и известного способов определения реологических характеристик полимерных лаков приведены в таблице 2.

Увеличение времени анализа более 15 не позволяет экспрессно проводить замеры глубины погружения индентора, чтобы обеспечить своевременную корректировку дозировочного коэффициента растворителя.

При увеличении температуры анализа более Т=68°С затрудняется поддержание ее на указанном уровне в измерительной чаше при отсутствии системы обогрева (только теплоизоляционный слой).

Концентрация полимерных пороховых лаков должна быть не более 50%, чтобы обеспечить деформирование массы в аппаратах с мешалками. При концентрациях лаков менее 10% диспергирование протекает очень быстро с получением мелкодисперсной практически однородной эмульсии.

Глубина погружения измерительной системы (до 90 мм) вариабильна и зависит от вида измерительной системы и вязкости лака.

Таким образом, способ определения реологических характеристик полимерного порохового лака различных концентраций на основе глубины погружения измерительной системы за 15 с с использованием штативного пенетрометра позволяет экспрессно корректировать дозировку растворителя непосредственно в процессе приготовления лаков, обеспечивая стабильность выхода целевой фракции пороха за счет достижения аналогичных реологических характеристик лака от операции к операции независимо от вида сырья и удовлетворяет условиям патентоспособности.

Способ определения реологических свойств полимерного порохового лака на штативном пенетрометре, характеризующийся тем, что в отобранную пробу лака, имеющего концентрацию 10-50% при температуре 20-68°С, находящуюся в цилиндрической чаше глубиной до 90 мм, погружают под действием силы тяжести всю измерительную систему, состоящую из стержня с упором и взаимозаменяемых инденторов, а именно сферы или конуса, или перфорированного диска, накручивающихся на нижнюю часть стержня в зависимости от вязкости порохового лака, измеряют глубину погружения системы, масса которой находится в пределах от 24,8 до 51,4 г, за фиксированное время погружения, равное 15 с.



 

Похожие патенты:

Изобретение относится к устройству и способу использования устройства для определения реологических свойств бетона. Портативная ручная штукатурная лопатка (10) содержит рукоять (11), лопатку (12), присоединенную без возможности вращения к переднему концу (13) рукояти (11), сенсорное средство (14) для определения действующей на лопатку (12) силы, электронный модуль (17) для оценки собранных сенсорным средством (14) данных, и источник электроэнергии для обеспечения электроэнергией сенсорного средства и электронного модуля.

Группа изобретений относится к области медицины и может быть использована для определения времени свертывания подлежащей анализу пробы крови. Для этого предлагается способ определения времени свертывания подлежащей анализу пробы крови, включающий в себя следующие этапы: берут реакционную кювету (2), помещают ферромагнитный шарик (11) на поверхность качения (9) реакционной кюветы (2), воздействуют на шарик (11) магнитным полем для приведения его в колебательное движение по поверхности качения (9), освещают пробу крови падающим световым лучом (36), детектируют световой луч (38), пропущенный через кювету (2) и исходящий из падающего светового луча (36), с получением при этом измерительного сигнала (SM).

Изобретение относится к процессу контроля качества бетонных смесей, в частности к контролю реологических свойств бетонной смеси и может быть применено в строительных и научно-исследовательских лабораториях при измерении вязкости бетонной смеси.

Изобретение относится к области контрольно-измерительного оборудования для определения упруго-вязкой среды и вязкой среды, в частности полимерных сред. Устройство для определения упруго-вязкой и вязкой среды полимерной смолы состоит из двух коаксиальных цилиндров, имеющих вращение, между которыми находится полимерная смола, наружный цилиндр имеет устройство, задающее вращательное колебательное движение с определенной амплитудой и определенной частотой, внутренний цилиндр подвешен на цилиндрической трубке, один конец которой связан с цилиндром, а другой конец связан с неподвижным корпусом устройства, внутренний цилиндр имеет устройство, регистрирующее процесс колебаний цилиндра, амплитуду и частоту.

Изобретение относится к технологиям производства и использования сорбентов, применяемых в том числе для медицинских целей, а именно для экстракорпоральной терапии больных с сепсисом с использованием сорбции биологических жидкостей.

Изобретение относится к области измерительной техники, а именно к устройствам измерения вязкости жидкости в условиях высокого давления, и может найти применение для обнаружения на больших глубинах подводных морских объектов с помощью мониторинга вязкости морской воды.

Изобретение относится к методам контроля веществ, находящихся в жидком состоянии, и может быть использовано для автоматического измерения динамической вязкости жидкости.

Изобретение относится к способу измерения вязкости. Заявленный способ измерения вязкости включает: (i) этап получения изображения капли в статическом состоянии без вибрации; (ii) этап применения вибратора для сообщения вибрации капле и получения изображения динамического состояния, в котором капля максимально вытянута в горизонтальном направлении или максимально вытянута в вертикальном направлении; (iii) этап получения скорости изменения статической кривизны и скорость изменения динамической кривизны границы капли из изображений, полученных на этапах (i) и (ii); и (iv) этап подстановки отношения скорости изменения статической кривизны к скорости изменения динамической кривизны границы капли в уравнение взаимодействия, скорректированное для вибратора, чтобы получить вязкость капли.

Изобретение относится к области измерительной техники и может быть использовано для определения вибрационным методом изменения сдвиговой вязкости небольших объемов жидкости в локальной области при одновременном измерении ее температуры.

Изобретение относится к технике измерения абсолютного коэффициента вязкости жидкостей, а более конкретно к измерению вязкости методом вращающихся цилиндров, между которыми помещается исследуемая жидкость.

Изобретение раскрывает конструкцию автономного грузовика для взрывных работ и способ его применения. Автомобиль (1) для закладки взрывчатых веществ во взрывные скважины (10) содержит бак (2) для хранения взрывчатого вещества, вертикально перемещающуюся платформу (3) и механический манипулятор (4).
Наверх