Способ определения токсичности воздуха по реакции прорастания семян высших растений

Заявляемый способ относится к токсикологии и может быть использован для определения токсического воздействия органических и неорганических химических соединений, входящих в состав атмосферного воздуха, и экологической оценки состояния населенных пунктов. Способ определения токсичности воздуха по прорастанию семян высших растений осуществляется в несколько стадий: на первой стадии в сухую погоду на исследуемой экспериментальной территории и в условно чистой зоне производят сбор листьев с одинакового вида древесных растений, на второй стадии готовят из отобранных листьев древесных растений одного вида водные суспензии, для приготовления раствора собранные листья в количестве 100 шт. с экспериментальной территории и 100 шт. листьев из условно чистой зоны помещают в химические стаканы с дистиллированной водой, объемом по 1000 мл, перемешивают их в течение 2-3 мин, затем листья растений пинцетом отбирают из химических стаканов, на третьей стадии для исследований берут стерилизованные чашки Петри диаметром 10 см, укладывают на их дно фильтровальную бумагу, в одну из чашек Петри наливают водную пылевидную суспензию из экспериментальной зоны объемом 5 мл, а в другую - 5 мл водную пылевидную суспензию из условно чистой зоны, в каждую чашку Петри аккуратно и равномерно пинцетом укладывают на фильтровальную бумагу по 50 шт. семян растительных тестовых биокультур, чашки Петри закрывают покровными стеклами и помещают в термостат для проращивания семян, на четвертой стадии испытаний определяют степень прорастания семян тестовых культур по длине корней проросших семян и затем рассчитывают уровень фитоксичности на субстрате водных пылевидных суспензий с экспериментальной территории по формуле: Тф = (Lкср.–Lэср. / Lкср.) × 100 %, где Lкср. - среднее значение длины корней семян, мм, которые выросли на субстрате водных пылевидных суспензий из условно чистой зоны, а Lэср. - среднее значение длины корней семян, мм, которые выросли на субстрате водных пылевидных суспензий из экспериментальной зоны. Техническим результатом при реализации заявленного решения является повышение эффективности способа определения токсичности воздуха по реакции прорастания семян высших растений в водных пылевидных суспензиях с содержанием в них органических и неорганических веществ. 4 ил., 1 табл.

 

Заявляемый способ относится к токсикологии и может быть использован для определения токсического воздействия органических и неорганических химических соединений, входящих в состав атмосферного воздуха и экологической оценке состояния населенных пунктов.

Известен способ определения токсичности воздуха по реакции тестовой биокультуры. Способ осуществляют путем улавливания и растворения органических и неорганических веществ-токсикантов из воздушной среды, используя солевой раствор Лозина-Лозинского. В качестве биологического объекта для определения токсичности воздуха используют инфузории Paramecium caudatum. Оценку токсичности полученных образцов производят на основе способности инфузорий Paramecium caudatum реагировать на присутствие в этом растворе веществ, представляющих опасность для их жизнедеятельности, и направленно перемещаться по градиенту концентраций этих веществ (хемотаксическая реакция), избегая их вредного воздействия и по этой реакции нфузорий Paramecium caudatum судят о степени токсичности воздуха [Патент РФ № 2335770, опубликован 10.10.2008-прототип].

Недостатком способа является сложность его осуществления с использованием различных технических средств и химических реактивов, аспирационного оборудования, поглотителей Рыхтера с солевым раствором Лозина-Лозинского, фотометра, 5% раствора поливинилового спирта и др., а также дополнительных мероприятий в виде подготовки образцов тестовых культур к проведению эксперимента, а именно промывки тестовых образцов от продуктов метаболизма и корма, проверки их на чувствительность раствором CuSO4 c концентрацией 0,1 мг/дм3 и др., что требует также определенных профессиональных навыков.

Технический результат – повышение эффективности способа определения токсичности воздуха по реакции прорастания семян высших растений в водных пылевидных суспензиях с содержанием в них органических и неорганических веществ.

Задачей заявляемого изобретения – повышение эффективности способа определения токсичности воздуха по реакции прорастания семян высших растений в водных пылевидных суспензиях с содержанием в них органических и неорганических веществ за счет упрощения способа, исключающим мероприятия по пробоподготовки тестовых биокультур с использованием реактивов и различных технических средств при одновременном снижении трудовых и экономических затрат на осуществление способа.

Решение технической задачи

Способ определения токсичности воздуха по прорастанию семян высших растений, включающий улавливание из воздушной среды органических и неорганических веществ-токсикантов, растворение их с получением исследуемых водных растворов и определение оценки загрязнения воздуха по реакции тестовых биокультур в исследуемых растворах с определением индекса токсичности воздушной среды, в котором для улавливания из воздушной среды органических и неорганических веществ-токсикантов используют листовые пластинки древесных растений одного вида, произрастающих в экспериментальной зоне и в условно чистой зоне, а в качестве тестовых биокультур используются семена высших растений, при этом способ осуществляется в несколько стадий: на первой стадии в сухую погоду на исследуемой экспериментальной территории и в условно чистой зоне, выбранной в качестве контрольной, производят сбор листьев с одинакового вида древесных растений с предполагаемыми на них пылевидными частицами с содержанием органических и неорганических веществ, с одного древесного растения отбирается 10 листьев и с не менее 10 древесных растений, каждая выборка включает по 100 листьев, как с экспериментальной территории, так и из условно-чистой зоны, на второй стадии готовят из отобранных листьев древесных растений одного вида водные суспензии - смыв пыли с листьев растений, для приготовления раствора собранные листья в количестве 100 шт. с экспериментальной территории и 100 шт. листьев из условно-чистой зоны помещают в химические стаканы с дистиллированной водой, объемом по 1000 мл, перемешивают их в течение 2-3 минут и получают две водные суспензии с содержанием пылевидных частиц, затем листья растений пинцетом отбирают из химических стаканов, на третьей стадии для исследований берут чашки Петри диаметром 10 см, которые стерилизуют в сушильном шкафу при температуре 130 °С в течение 1часа или кипячением в воде в течение 40 минут, после чего укладывают на дно чашек Петри фильтровальную бумагу, в одну из чашек Петри наливают водную пылевидную суспензию из экспериментальной зоны объемом 5 мл, а в другую - 5 мл водную пылевидную суспензию из условно-чистой зоны, в каждую чашку Петри аккуратно и равномерно пинцетом укладывают на фильтровальную бумагу по 50 штук семян растительных тестовых биокультур, при чем уровень жидкости в чашках Петри должен быть ниже поверхности семян, чашки Петри закрывают покровными стеклами и помещают в термостат при температуре 20 °С для проращивания семян, время проращивания семян в термостате обусловлено выбором растительных тестовых культур высших растений, на четвертой стадии испытаний определяют степень прорастания семян тестовых культур, измеряя длину корней проросших семян тестовых растительных биокультур как в контрольной так и в экспериментальной группах и затем рассчитывают уровень фитоксичности на субстрате водных пылевидных суспензий с экспериментальной территории по формуле: Тф= (Lкср.–Lэср./ Lкср.) х 100%, где Lкср.- среднее значение длины корней семян в мм, которые выросли на субстрате водных пылевидных суспензий из условно-чистой зоны, а Lэср.- среднее значение длины корней семян мм, которые выросли на субстрате водных пылевидных суспензий из экспериментальной зоны, по уровню фитотоксичности пылевидных суспензий оценивается экологическое состояние воздушной среды территории, при фитотоксичности - Тф= 90 -100 % (5-ый уровень фитотоксичности), что соответствует очень сильному загрязнению атмосферы воздуха, при токсичности Тф=75-90%, (4-ый уровень фитотоксичности), что соответствует сильному загрязнению атмосферы воздуха, при фитотоксичности Тф=50-75%, (3-ий уровень фитотоксичности), соответствует среднему загрязнению атмосферы воздуха, при фитотоксичности Тф= 25 -50 %, (2-ой уровень фитотоксичности), соответствует слабому загрязнению атмосферы и токсичности воздуха и фитотоксичности Тф<25 % - 1-ый уровень фитотоксичности, который соответствует очень слабому загрязнению атмосферы и фитотоксичности воздуха или отсутствием загрязняющих веществ в воздухе.

Осуществление способа

Способ определения токсичности воздуха и оценка экологического состояния воздушной среды территории заключается в том, что он осуществляется в несколько стадий.

На первой стадии в сухую погоду на исследуемой экспериментальной территории и в условно чистой зоне, выбранной в качестве контрольной, производят сбор листьев с одинакового вида древесных растений с предполагаемыми пылевидными частицами и с содержанием органических и неорганических веществ на поверхности листовых пластинок. С одного древесного растения отбирается 10 листьев и с не менее 10 древесных растений одного вида, каждая выборка включает по 100 листьев, как на экспериментальной территории, так и в условно-чистой зоне. На второй стадии готовят из отобранных листьев древесных растений одного вида пылевидные водные суспензии (смыв пыли с листьев растений). Для приготовления раствора собранные листья в количестве 100 шт. с экспериментальной территории и 100 шт. листьев из условно-чистой зоны помещают в химические стаканы с дистиллированной водой, объемом по 1000 мл, перемешивают их в течение 2-3 минут и получают две водные суспензии с содержанием пылевидных частиц с содержанием в них органических и неорганических веществ. Затем листья растений аккуратно пинцетом отбирают из химических стаканов и получают водные пылевидные суспензии, готовые для исследований. На третьей стадии для исследований берут чашки Петри диаметром 10 см. Чашки Петри стерилизуют в сушильном шкафу при температуре 130 °С в течение 1 ч или кипячением в воде в течение 40 мин. Затем укладывают на дно чашек Петри фильтровальную бумагу. В одну из чашек Петри наливают водную пылевидную суспензию (смыв пыли с листьев растений с экспериментальной территории) объемом 5 мл, а в другую - 5 мл водной пылевидной суспензии с условно-чистой зоны. В каждую чашку Петри аккуратно и равномерно пинцетом укладывают на фильтровальную бумагу по 50 штук семян растительных тестовых культур. Уровень жидкости в чашках Петри должен быть ниже поверхности семян. Чашки Петри закрывают покровными стеклами и помещают в термостат при температуре 20 °С для их проращивания. Время проращивания семян в термостате обусловлено выбором растительных тестовых культур высших растений (Приложении №1 ГОСТ 120 3 8 -8 4 С. 10). На четвертой стадии испытаний определяют степень прорастания семян тестовых культур, измеряя длину корней проросших семян тестовых растительных культур как в контрольной так и в экспериментальной группах и затем рассчитывают уровень фитотоксичности (способность химических веществ, растворенных в воде, угнетать (ингибировать) прорастание семян высших растений) водных пылевидных суспензий по формуле: Тф= (Lк - Lэ / Lк) х 100 %.

По уровню фитотоксичности пылевидных суспензий оценивается экологическое состояние атмосферы территории.

При фитотоксичности - Тф= 90 -100 % и более (5-ый уровень фитотоксичности), что соответствует очень сильному загрязнению атмосферы воздуха, при токсичности Тф= 75 -90 %, (4-ыйуровень фитотоксичности), что соответствует сильному загрязнению атмосферы воздуха, при фитотоксичности Тф= 50-75 %, (3-ий уровень фито токсичности), соответствует среднему загрязнению атмосферы воздуха, при фитотоксичности Тф= 25 -50 %, (2-ой уровень фитотоксичности), соответствует слабому загрязнению атмосферы и токсичности воздуха и если фито токсичность Тф<25 %, это 1-ый уровень фитотоксичности, который соответствует очень слабому загрязнению атмосферы и токсичности воздуха или отсутствием загрязняющих веществ и токсичности воздуха.

Пример конкретного исполнения

В соответствии с изложенной сущностью приводится пример осуществления способа.

Фитотоксичность - способность химических веществ, в том числе поверхностно активных веществ (ПАВ), растворенных в воде, угнетать (ингибировать) прорастание семян высших растений.

В качестве образцов для получения водных суспензий были использованы листья ивы белой (Salixalba L.), обладающие наибольшей способностью адсорбировать из атмосферы воздуха органические и неорганические химические соединения. Отбор образцов листьев ивы белой (Salixalba L) производился в населенном пункте Киляковка в Среднеахтубинском районе Волгоградской области, расположенном на берегу реки Ахтуба, территории тектонических разломов, характеризующейся природным источником загрязняющих веществ (экспериментальная территория) и в коттеджном поселке «Прибрежный» (условно чистая зона), располагающемся на берегу реки Волга. Способ определения токсичности воздуха и оценки экологического состояния атмосферы территории, осуществлялся в несколько стадий.

Примеры конкретного осуществления способа проиллюстрированы на фотографиях:

- на фиг.1 представлены фотографии образцов группы чашек Петри с субстратом водных пылевидных суспензий из условно-чистой зоны с семенами кресс-салата ДУКАТ;

- на фиг.2 представлена фотография проростков семян кресс-салата ДУКАТ с субстратом из условно-чистой зоны;

- на фиг.3 представлена фотография проростков семян кресс-салата ДУКАТ с субстратом из экспериментальной зоны;

- на фиг.4 представлены в сравнении два проростка по длине корней из семян кресс-салата ДУКАТ, которые культивировались с субстратом водных пылевидных суспензий из условно-чистой зоны и с субстратом из экспериментальной зоны.

На первой стадии в сухую погоду на исследуемых территориях производили сбор листьев с ивы белой (Salixalba L.) с предполагаемыми пылевидными частицами на поверхности листовых пластинок. С одного древесного растения - ивы белой (Salixalba L.) отбирали по 10 листьев, каждая выборка включала по 100 листьев с 10 древесных растений, произрастающих на экспериментальной территории и 100 листьев с 10 древесных растений того же вида, произрастающих в условно-чистой зоне.

На второй стадии из листьев ивы белой (Salixalba L.) с экспериментальной территории (Э) и из условно-чистой зоны (К) готовили пылевидные водные суспензии (смыв пыли с листьев) . Для этого листья ивы белой (Salixalba L.), в количестве 100 шт., с экспериментальной территории и листья в количестве 100 шт. из условно-чистой зоны помещали в химические стаканы с дистиллированной водой объемом по 1000 мл, перемешивали их в дистиллированной воде в течение 2-3 минут, затем аккуратно пинцетом листья отбирали из химических стаканов и получали две водные суспензии с содержанием пылевидных частиц.

На третьей стадии исследования брали 8 чашек Петри диаметром 10см и стерилизовали их кипячением в воде 40 мин. Укладывали на дно чашек Петри фильтровальную бумагу. В четыре чашки Петри наливали приготовленные водные пылевидные суспензии с экспериментальной территории объемом по 5 мл, а в другие четыре чашки Петри наливали по 5 мл водной пылевидной суспензии из условно-чистой зоны. В каждую чашку Петри аккуратно и равномерно пинцетом укладывали на фильтровальную бумагу по 50 штук семян растительных тестовых биокультур, при этом соблюдалось условие, чтобы уровень жидкости в чашках Петри был ниже поверхности семян. В качестве тестовой биокультуры применяли семена кресс-салат ДУКАТ (производитель: ООО «ЦЕНТР-ОГОРОДНИК»). Всего было задействовано восемь чашек Петри: 4 чашки Петри с субстратом водных пылевидных суспензий из условно-чистой зоны и 4 чашки Петри с субстратом с экспериментальной территории. Чашки Петри закрывали покровными стеклами и помещали в термостат при температуре 20 °С на 72 часа (ГОСТ 120 38 - 84 С. 10 (Приложение №1).

На четвертой стадии - через 72 часа измеряли длину корней в мм проростков как в контрольной так и в экспериментальной группах, в которых семена кресс-салата Дукат дали различную длину корней проростков, и затем рассчитывали уровень фитотоксичности водных пылевидных суспензий по формуле: Тф= (Lк - Lэ / Lк) х 100 %, где

ср.- среднее значение длины корней семян в мм, которые выросли на субстрате водных пылевидных суспензий из условно-чистой зоны, Lэср.- среднее значение длины корней семян в мм, которые выросли на субстрате водных пылевидных суспензий из экспериментальной зоны.

Результаты измерений через 72 часа длины корней проросших семян кресс-салата ДУКАТ в водных пылевидных суспензиях в чашках Петри (№1, №2, №3, №4) из условно-чистой зоны (К) и в чашках Петри (№5, №6, №7, №8) из экспериментальной территории (Э) представлены в таблице 1. У проростков семян, выращенных в субстрате из условно-чистой зоны, длины корней значительно больше, чем у проростков семян, выращенных в субстрате из экспериментальной территории.

Таблица 1

Показатель фитотоксичности Средние значения показателя фитотоксичности водных пылевидных суспензий из условно-чистой зоны
(Lк)
Среднее значение показателя
из 4-х проб
(Lкср.)
Средние значения показателя фитотоксичностиводных пылевидных суспензий с экспериментальной территории
(Lэ)
Среднее значения показателя в пробах
(Lэср.)
Уровень фито
токсичности
ф)
Оценка экологического состояния атмосферы территории
№1 №2 №3 №4 №5 №6 №7 №8
Длина корешка (Lх), мм 35,36+2,11 40,58+1,76 39,18+1,83 38,32+2,14 38,36+0,99 11,98+0,99 10,44+0,69 10,30+0,70 11,2+0,38 11,19+0,39 3 «среднее загрязнение»

Тф-уровень фитотоксичности (%) водных пылевидных суспензий определяли по формуле:

Тф= (Lкср.–Lэср./ Lкср.) х 100%, где

ср.- среднее значение длины корней семян, мм, которые выросли на субстрате водных пылевидных суспензий из условно-чистой зоны

ср.- среднее значение длины корней семян, мм, которые выросли на субстрате водных пылевидных суспензий с экспериментальной территории.

Используя приведенную выше формулу и результаты опытных данных определяли фитотоксичность в экспериментальной зоне (Э) в населенном пункте Киляковка, которая составила Тф=(38,36–11,19/38,36)х100%=70,83%. Поученное значение находится в диапазоне Тф= 50-75 %, что соответствует 3-му уровню фитотоксичности или среднему загрязнению и токсичности воздуха территории, то есть в пылевидных частицах на листьях ивы белой (Salixalba L.) содержатся вещества - токсиканты, которые могут представлять опасность для окружающей среды.

Способ определения токсичности воздуха по прорастанию семян высших растений, включающий улавливание из воздушной среды органических и неорганических веществ-токсикантов, растворение их с получением исследуемых растворов и определение оценки загрязнения воздуха по реакции тестовых биокультур в исследуемых растворах с определением индекса токсичности, отличающийся тем, что для улавливания из воздушной среды органических и неорганических веществ-токсикантов используют листовые пластинки древесных растений одного вида, произрастающих в экспериментальной зоне и в условно чистой зоне, а в качестве тестовых биокультур используются семена высших растений, при этом способ осуществляется в несколько стадий: на первой стадии в сухую погоду на исследуемой экспериментальной территории и в условно чистой зоне, выбранной в качестве контрольной, производят сбор листьев с одинакового вида древесных растений с предполагаемыми на них пылевидными частицами с содержанием органических и неорганических веществ, с одного древесного растения отбирается 10 листьев и с не менее 10 древесных растений, каждая выборка включает по 100 листьев как на экспериментальной территории, так и в условно чистой зоне, на второй стадии готовят водные суспензии, для приготовления растворов собранные листья в количестве 100 шт. с экспериментальной территории и 100 шт. листьев из условно чистой зоны помещают в химические стаканы с дистиллированной водой, объемом по 1000 мл, перемешивают их в течение 2-3 мин, затем листья растений аккуратно пинцетом отбирают из химических стаканов и получают две водные суспензии с содержанием пылевидных частиц, на третьей стадии для исследований берут чашки Петри диаметром 10 см, которые стерилизуют в сушильном шкафу при температуре +130 °С в течение 1 ч или кипячением в воде в течение 40 мин, после чего укладывают на дно чашек Петри фильтровальную бумагу, в одну из чашек Петри наливают водную пылевидную суспензию - смыв пыли с листьев растений из экспериментальной зоны объемом 5 мл, а в другую - 5 мл водную пылевидную суспензию из условно чистой зоны, в каждую чашку Петри аккуратно и равномерно пинцетом укладывают на фильтровальную бумагу по 50 шт. семян растительных тестовых биокультур, причем уровень жидкости в чашках Петри должен быть ниже поверхности семян, чашки Петри закрывают покровными стеклами и помещают в термостат при температуре 20 °С для проращивания семян, время проращивания семян в термостате обусловлено выбором растительных тестовых культур высших растений, на четвертой стадии испытаний определяют прорастание семян тестовых биокультур, измеряя длину корней проросших семян тестовых растительных биокультур как в контрольной, так и в экспериментальной группах, и затем рассчитывают уровень фитоксичности на субстрате водных пылевидных суспензий с экспериментальной территории по формуле: Тф = (Lкср.–Lэср. / Lкср.) × 100 %, где Lкср. - среднее значение длины корней семян, мм, которые выросли на субстрате водных пылевидных суспензий из условно чистой зоны, Lэср. - среднее значение длины корней семян, мм, которые выросли на субстрате водных пылевидных суспензий с экспериментальной территории, по уровню фитотоксичности пылевидных суспензий оценивается экологическое состояние воздушной среды территории, при фитотоксичности Тф = 90-100 % - 5-й уровень фитотоксичности, что соответствует очень сильному загрязнению атмосферы воздуха, при токсичности Тф = 75-90 % - 4-й уровень фитотоксичности, что соответствует сильному загрязнению атмосферы воздуха, при фитотоксичности Тф = 50-75 % - 3-й уровень фитотоксичности, соответствует среднему загрязнению атмосферы воздуха, при фитотоксичности Тф = 25-50 % - 2-й уровень фитотоксичности, соответствует слабому загрязнению атмосферы и токсичности воздуха и при фитотоксичности Тф<25 % - 1-й уровень фитотоксичности, который соответствует очень слабому загрязнению атмосферы и фитотоксичности воздуха или отсутствию загрязняющих веществ в воздухе.



 

Похожие патенты:

Изобретение относится к диагностическим анализаторам in-vitro. Одноразовый картридж для испытаний для портативного анализатора содержит корпус картриджа, снабженный множеством камер, причем в каждой из множества камер выполнено отверстие в верхней части корпуса картриджа; крышку картриджа, соединенную с корпусом картриджа, причем крышка картриджа имеет отверстие для приема капилляра и удлиненную часть трубки в крышке, проходящую от отверстия для приема капилляра на заданную длину в направлении корпуса картриджа, но на расстоянии от него; эластомерный трубчатый капиллярный очиститель, расположенный внутри и проходящий через отверстие для приема капилляра, который определяет внутреннее сквозное пространство и выровнен с отверстием для приема капилляра, причем трубчатый капиллярный очиститель и отверстие для приема капилляра выровнены с одной из множества камер корпуса картриджа, трубчатый капиллярный очиститель снабжен трубчатой верхней частью с отверстием верхней части и суженной нижней частью с отверстием нижней части; и капиллярный элемент, выполненный с возможностью съемного введения в крышку картриджа, причем капиллярный элемент снабжен капиллярной трубкой, которая проходит в отверстие для приема капилляра и через трубчатый капиллярный очиститель, причем кончик капиллярной трубки проходит через отверстие нижней части и в одну из множества камер корпуса картриджа, причем отверстие нижней части имеет диаметр, который меньше чем внешний диаметр капиллярной трубки, и расширяется вокруг капиллярной трубки.Техническим результатом является представление портативного анализатора, обрабатывающего образцы цельной крови без необходимости отделения клеток крови от плазмы крови, и одноразового картриджа для испытаний для использования в портативном анализаторе, который предотвращает и/или снижает вероятность получения ошибочного результата.

Заявка относится к способу широкомасштабного высокоинформативного анализа биологических образцов, осуществленному в системе открытых микролунок с возможностью переворачивания, которая содержит упорядоченную последовательность открытых микролунок, по меньшей мере один микроканал, по меньшей мере один впускной порт для реагентов и/или для одного или более биологических образцов и по меньшей мере один выпускной порт для них же, впускные и выпускные порты сообщаются по микропотоку текучей среды с одним или более микроканалами, микроканал обладает площадью в сечении, размеры которой составляют несколько микрометров, и обеспечивает текучую среду в микролунки, причем система открытых микролунок с возможностью переворачивания введена в автоматическую систему управления.

Использование: для диагностических анализов. Сущность изобретения заключается в том, что аппаратный комплекс для диагностических анализов содержит опорную конструкцию, внутри которой расположены первый холодильный контейнер для вмещения по меньшей мере одного набора антибиотиков (n), содержащихся в ампулах или флакончиках и разбавленных жидкой средой для обеспечения возможности распределения их в жидкой фазе и тестирования их по совокупности молекул, которые могут быть выбраны оператором, возможно, также в совокупности концентраций (m), чтобы была обеспечена возможность создания регулируемой антибиотикограммы, и определить минимальную ингибирующую концентрацию для каждого из выбранных антибиотиков, аналитическую область, в которой размещены микропланшеты с совокупностью гнезд или лунок, в которых введена порция первичного образца, узел извлечения и доставки образцов, выполненный с возможностью извлекать порцию первичного образца из соответствующих пробирок и доставлять ее в лунки упомянутых микропланшетов, область контроля температуры микропланшетов, содержащих первичные образцы, и робототехническую головку, выполненную с возможностью взаимодействовать с упомянутым узлом извлечения и доставки образцов с обеспечением возможности переноса первичных образцов, взятых из пробирок в упомянутых микропланшетах аналитической области, и переноса микропланшетов в область регулирования температуры, а также выполненную с возможностью вводить в каждую из лунок микропланшетов образец, в котором идентифицировано размножение бактерий, порцию одного из упомянутых антибиотиков (n) в жидкой форме по выбору на усмотрение оператора, направляемую как функция типа идентифицированного вида бактерии.

Изобретение относится к медицине, а именно к области профилактики различных заболевай путем проведения массового обследования людей, проживающих в отдаленных районах сельской местности, путем телемедицины на основании предварительно проведенных анализов неинвазивных биологических субстанций, таких как моча, кал, слюна семенная жидкость и прочие.

Настоящее изобретение относится к усовершенствованию устройств для отбора проб жидкостей, например различных биологических жидкостей, в частности цельной крови, мочи и т.д., размещенных в контейнерах для проб.

Группа изобретений относится к области модульных аналитических систем. Установка для проведения множественных анализов содержит источник питания; несколько аналитических блоков, функционально соединенных друг с другом, причем каждый из нескольких аналитических блоков содержит ящик, который может выборочно открываться и закрываться; несколько аналитических устройств, каждое из которых выполнено с возможностью загрузки образцом, предназначенным для анализа, и размещения в соответствующем ящике соответствующего одного из нескольких аналитических блоков; и контрольный блок, содержащий контроллер для взаимодействия с каждым из аналитических блоков для выборочного открытия и закрытия соответствующего ящика и управления каждым анализом.

Группа изобретений относится к средствам оптимизации лабораторных исследований образцов горных пород, взятых из нефтегазоносного пласта. Сущность: выполняют стандартные лабораторные исследования образцов горных пород, результаты которых используют для формирования базы данных по исследованию пластов.

Настоящее изобретение относится к устройству (1) обращения с жидкостью, содержащему рабочую платформу (2), имеющую множество гнезд (3) для размещения расходуемых продуктов (100) и определяющую первую часть (51) рабочей поверхности (50) устройства (1), и подающую платформу (4) для расходуемых продуктов (100), определяющую вторую часть (52) рабочей поверхности (50) и содержащую по меньшей мере одну модульный каркас (40), снабженный по меньшей мере одной удерживающей рамой (41) для расходуемых продуктов (100), причем модульный каркас (40) выполнен подвижным относительно рабочей платформы (2) для обеспечения возможности присоединения удерживающей рамы (41) к модульному каркасу (40) и отсоединения от него; удерживающая рама (41) имеет несущий контейнер (42), позволяющий штабелировать расходуемые продукты (100) под рабочей поверхностью (50), и отверстие (43) на рабочей поверхности (50), позволяющее располагать расходуемые продукты (100) на рабочей поверхности (50).

Изобретение относится к способам и системам для определения местоположения и выбора колонии микроорганизмов, а также для идентификации микроорганизмов с применением масс-спектрометрии.

Изобретение относится к области медицины. Предложен автоматизированный способ обнаружения нуклеиновых кислот ВИЧ-1 в образце крови.

Изобретение относится к области биотехнологии, конкретно к антитело-опосредованному биосенсору, содержащему клетку, экспрессирующую химерный гибридный белок, который содержит антитело-связывающий домен Fcγ-рецептора, трансмембранный домен и сигнальный домен альфа-иммуноглобулина, и может быть использовано в медицине.
Наверх