Способ получения безвольфрамовых твердосплавных порошков из отходов сплава марки кнт-16 в спирте этиловом

Изобретение относится к области порошковой металлургии, в частности способу получения порошка безвольфрамового твердого сплава, и может быть использовано для изготовления спеченных изделий, нанесения износостойких покрытий для восстановления и упрочнения деталей машин. Способ получения безвольфрамовых твердосплавных микро- и наноразмерных порошков сферической формы из отходов безвольфрамового твердого сплава включает электроэрозионное диспергирование отходов твердых сплавов. Электроэрозионному диспергированию в этиловом спирте подвергают отходы безвольфрамового твердого сплава марки КНТ-16 при частоте следования импульсов 95-105 Гц, напряжении на электродах 195-205 В и емкости конденсаторов 25,5 мкФ, затем проводят центрифугирование полученного раствора, содержащего микро-, нано- и крупноразмерный порошок, для отделения от него крупноразмерного порошка, после чего раствор, содержащий микро- и наноразмерный порошок, подвергают выпариванию, а полученный микро- и наноразмерный порошок подвергают сушке. Получение порошкового материала происходит из готового безвольфрамового твердого сплава методом электроэрозионного диспергирования, отсутствует необходимость спекания компонентов для дальнейшего размалывания и получения конечного продукта, что значительно снижает энергозатратность и себестоимость процесса. 6 ил., 3 пр.

 

Изобретение относится к области порошковой металлургии, в частности к составам и способам получения порошка безвольфрамового твердого сплава, и может быть использовано для изготовления спеченных изделий, нанесения износостойких покрытий - для восстановления и упрочнения деталей машин горно-металлургической промышленности, автомобильного, трамвайно-троллейбусного н судового транспорта.

Известен способ получения порошков из кусковых отходов твердых сплавов (Патент РФ №2170646, МПК B22F 9/04, С22В 7/00). Способ включает термическую обработку кусковых отходов твердых сплавов путем нагрева и охлаждения в водном растворе с последующим механическим измельчением, причем термическую обработку проводят циклически. Нагрев осуществляют до 750-850°С, охлаждение ведут в 5-15%-ном растворе хлористого натрия, причем температуру раствора в процессе охлаждения поддерживают не выше 25°С. Количество циклов термической обработки выбирают в пределах 1-5 до достижения значения прочности сплава на сжатие 500 МПа не менее. Измельчение кусковых отходов размером более 15 мм осуществляют в дробилке с возвратно-поступательным движением рабочего органа, преимущественно в щековой дробилке. Измельчение кусковых отходов размером менее 15 мм производят в конусно-инерционной дробилке, при этом отношение массы рабочего конуса к массе кусковых отходов, находящихся в зоне измельчения, выбирают равным не менее 25. Способ позволяет перерабатывать отходы твердых сплавов и получать порошки различного фракционного состава. Недостатком данного способа получения порошков из кусковых отходов твердых сплавов являются высокая энергозатратность, многооперационность, высокая энергоемкость.

Наиболее близким к заявляемому является способ изготовления твердосплавных смесей из отработанных твердых сплавов (Патент РФ №2157741, МПК B22F 9/04, С22В 7/00). Способ включает отжиг твердосплавного лома в защитной атмосфере или вакууме, дробление, размол до фракции 40 мкм и менее, при этом лом перед отжигом сортируют в партии по химическому составу и массе, производят удаление поверхностных загрязнений, а температуру отжига для каждой партии определяют в зависимости от содержания кобальта по формуле где t - температура отжига, °С; K - коэффициент, учитывающий техническое состояние печи, равный 1375-1740; В - коэффициент, учитывающий массу лома для единовременного отжига, равный 2900-3080; [Со] - концентрация кобальта. Способ обеспечивает получение товарных смесей, пригодных для изготовления высококачественных твердосплавных изделий. Недостатком данного метода получения твердо-сплавных смесей из отработанных твердых сплавов является многооперационность, низкая экологичность высокие энергоемкость и себестоимость процесса.

Существенным отличием предложенного способа является то, получение порошкового материала происходит из готового безвольфрамового твердого сплава методом электроэрозионного диспергирования, отсутствует необходимость спекания компонентов для дальнейшего размалывания и получения конечного продукта, что значительно снижает энергозатратность и себестоимость процесса.

Заявляемое изобретение направлено на решение задачи получения микро- нанопорошков из отходов безвольфрамового твердого сплава с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.

Поставленная задача достигается способом получения микро- нанопорошка из отходов безвольфрамового твердого сплава, отличающимся от прототипа тем, что отходы безвольфрамового твердого сплава марки КНТ-16 (ГОСТ 26530-85) подвергают электроэрозионному диспергированию в этиловом спирте при частоте следования импульсов 95-105 Гц; напряжении на электродах 195-205 В и емкости конденсаторов 25,5 мкФ, с последующим центрифугированием раствора для отделения микро- наноразмерных частиц от крупноразмерных.

На фигуре 1 описаны этапы получения микро- нанопорошка из отходов безвольфрамового твердого сплава; на фигуре 2 - схема процесса ЭЭД, на фигуре 3 - фазовый состав порошка, полученного из отходов безвольфрамового твердого сплава, на фигуре 4 - микрофотографии наночастиц полученного порошка; в фигуре 5 - элементный состав порошка, полученного из отходов безвольфрамового твердого сплава, на фигуре 6 - микрофотографии наночастиц полученного порошка.

Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами [Немилов, Е.Ф. Электроэрозионная обработка материалов. Л.: Машиностроение, Ленингр. отд-ние, 1983. - 160 с.]. Получение порошка из отходов безвольфрамового твердого сплава на экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов [Патент RU на изобретение №2449859] проводилось по схеме, представленной на фигуре 1 в четыре этапа:

- 1 этап - подготовка к процессу электроэрозионного диспергирования;

- 2 этап - процесс электроэрозионного диспергирования;

- 3 этап - выгрузка порошка из реактора и его центрифугирование.

- 4 этап - сушка и взвешивание микро- нанопорошка из отходов безвольфрамового твердого сплава марки КНТ-16.

Получаемые этим способом порошковые материалы, имеют в основном сферическую и эллиптическую форму частиц. Причем, изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов) можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса. Для отделения микро- наночастиц от крупноразмерных используется центрифуга.

На первом этапе производили сортировку отходов безвольфрамовых твердых сплавов, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой - этиловым спиртом, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.

На втором этапе - этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 2. Импульсное напряжение генератора 1 прикладывается к электродам 2 и далее к отходам 3 (в качестве электродов так же служили соответственно отходы безвольфрамового твердого сплава) в реакторе 4. При достижении напряжения определенной величины происходит электрический пробой рабочей среды 5, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии, материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырем 6). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил, капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы порошка 7. Регулятор напряжения 8 предназначен для установки необходимых значений напряжения, а встряхиватель 9 передвигает один электрод, что обеспечивает непрерывное протекание процесса ЭЭД.

На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора, отделение микро- наночастиц от крупноразмерных с помощью центрифуги. При этом крупные частицы оседают под действием центробежных сил, а наночастицы остаются в растворе.

На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка и последующий анализ микро- нанопорошка.

При этом достигается следующий технический результат: получение микро- нанопорошков из отходов безвольфрамового твердого сплава с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса способом электроэрозионного диспергирования (ЭЭД).

Способ позволяет получить порошки из отходов безвольфрамового твердого сплава без использования химических реагентов, что существенно влияет на себестоимость порошка и позволяет избежать загрязнения рабочей жидкости и окружающей среды химическими веществами.

Электроэрозионное диспергирование позволяет эффективно утилизировать отходы безвольфрамового твердого сплава с невысокими энергетическими затратами и экологической чистотой процесса и получать микро-нанопорошок.

Микро- нанопорошковые материалы, получаемые ЭЭД отходов безвольфрамовых твердых сплавов, могут эффективно использоваться изготовления спеченных изделий, нанесения износостойких покрытий - для восстановления и упрочнения деталей машин горно-металлургической промышленности, автомобильного, трамвайно-троллейбусного и судового транспорта, энергетического и нефтегазового оборудования.

Пример 1

Для получения нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы безвольфрамового твердого сплава марки КНТ-16 ГОСТ 26530-85 в виде отработанных твердосплавных пластин. Пластины загружали в реактор, заполненный рабочей жидкостью - этиловым спиртом. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 95-105 Гц;

- напряжение на электродах 195-205 В;

- емкость конденсаторов 25,5 мкФ.

Полученный порошок исследовали различными методами.

Исследование фазового состава порошка проводили методом рентгеновской дифракции на дифрактометре Rigaku Ultima IV в излучении Cu-Kα (длина волны λ=0.154178 нм) с использованием щелей Соллера. На основании фигуры 3 было установлено, что основными фазами в порошке, полученном методом электроэрозионного диспергирования отходов безвольфрамового твердого сплава марки КНТ-16 в этиловом спирте, являются TiC, MoNi3, Ni, Mo.

Для изучения элементного состава и морфологии полученного микро-нанопорошка из отходов безвольфрамового твердого сплава марки КНТ-16 были выполнены снимки с помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 600 FEG». На основании фигуры 4 микро- нано-порошок, полученный методом ЭЭД из отходов безвольфрамового твердого сплава марки КНТ-16, в основном, состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов). На основании фигуры 5 установлено, что основными элементами являются О (12,22%); Ti (60,78%); Ni (17,94%); Mo (5,28%).

Пример 2

Для получения дисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы безвольфрамового твердого сплава марки КНТ-16 ГОСТ 26530-85 в виде отработанных твердосплавных пластин. Пластины загружали в реактор, заполненный рабочей жидкостью - этиловым спиртом. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 90-100 Гц;

- напряжение на электродах 140-160 В;

- емкость конденсаторов 25,5 мкФ.

Для изучения формы и морфологии полученного микро- нанопорошка были выполнены снимки с помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 600 FEG». На основании фигуры 6, порошок, полученный методом ЭЭД из отходов безвольфрамового твердого сплава при данных режимах получается с частицами преимущественно неправильной (осколочной) формы, а также при данных параметрах диспергирования производительность процесса в 2,3 раза ниже, чем при параметрах диспергирования, описанных в первом примере.

Пример 3

Для получения дисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы безвольфрамового твердого сплава марки КНТ-16 ГОСТ 26530-85 в виде отработанных твердосплавных пластин. Пластины загружали в реактор, заполненный рабочей жидкостью - этиловым спиртом. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 300 Гц;

- напряжение на электродах 210 В;

- емкость конденсаторов 65,5 мкФ.

При данных режимах процесс диспергирования не стабилен и носит взрывной характер.

Способ получения безвольфрамовых твердосплавных микро- и наноразмерных порошков сферической формы из отходов безвольфрамового твердого сплава, включающий электроэрозионное диспергирование отходов твердых сплавов, отличающийся тем, что электроэрозионному диспергированию в этиловом спирте подвергают отходы безвольфрамового твердого сплава марки КНТ-16 при частоте следования импульсов 95-105 Гц, напряжении на электродах 195-205 В и емкости конденсаторов 25,5 мкФ, затем проводят центрифугирование полученного раствора, содержащего микро-, нано- и крупноразмерный порошок, для отделения от него крупноразмерного порошка, после чего раствор, содержащий микро- и наноразмерный порошок, подвергают выпариванию, а полученный микро- и наноразмерный порошок подвергают сушке.



 

Похожие патенты:

Изобретение относится к способам получения нерастворимых в воде отходов сульфидов мышьяка, не загрязняющих природную среду при хранении или утилизации. Может быть использовано при приготовлении твердеющей закладочной смеси отработанного пространства в шахтах.

Изобретение относится к способу получению биоцида и других продуктов на основе отходов производств, который может быть использован в различных защитных от биологических воздействий покрытиях.

Изобретение относится к утилизации больших количеств щелочных металлов и их сплавов, используемых в промышленности в качестве теплоносителя или рабочего тела. Устройство содержит плавильный бак с нагревателем для получения расплава щелочных металлов и соединенную с ним реакционную емкость.
Изобретение относится к смеси алюмооксидной для разжижения металлургических шлаков при производстве стали и сплавов. Смесь состоит из металлической корольковой составляющей и шлаковой составляющей, при этом металлическая корольковая составляющая содержит не менее 20,0 мас.% алюминия металлического королькового фракции +10 мм, не более 4,0 мас.% магния, не более 3,0 мас.% железа, не более 3,0 мас.% кремния, не более 1,0 мас.% меди и не более 1,5 мас.% цинка, а шлаковая составляющая содержит не более 18,0 мас.% хлор-ионов, не более 25,0 мас.% солей натрия и калия в соотношении 1:1, не более 6,0 мас.% оксида кальция, не более 3,5 мас.% оксида магния, не более 9,0 мас.% оксида кремния, не более 3,0 мас.% оксида железа Fe2O3, оксид алюминия - остальное.

Изобретение относится к гидрометаллургии тяжелых металлов и может быть использовано для извлечения соединений металлов с получением на их основе товарных продуктов.

Изобретение относится к получению цинкового порошка из цинксодержащих отходов для цементационной очистки растворов сульфата цинка от примесей кобальта, кадмия и сурьмы.

Изобретение относится к металлургии цветных и благородных металлов, в частности к методам получения чистого серебра. Способ включает химическое растворение серебросодержащего сырья в присутствии пероксида водорода, отделение нерастворимого остатка и выделение из полученного раствора серебра.

Изобретение относится к технологии обезвреживания физико-химическими методами гальванических шламов машиностроительного производства и может быть использовано для утилизации гальванических отходов на предприятиях машиностроительной отрасли и на предприятиях, занимающихся переработкой отходов.

Изобретение относится к гидрометаллургии черных, цветных и благородных металлов из пиритных огарков. Пиритные огарки перерабатывают для последующего извлечения оксида железа (Fe2O3), золота и серебра.

Изобретение относится к получению порошков для аддитивного производства из отходов металлургических и машиностроительных производств в виде шламов. Способ включает очистку упомянутых шламов от смазывающей-охлаждающей жидкости путем промывки органическим растворителем и дистиллированной водой с последующим центрифугированием и сушкой в инертной атмосфере при температуре от 100°С до 150°С, рассев с получением фракции 10-150 мкм, плазменную сфероидизацию выделенной фракции термической плазмой в камере с давлением от 0,88 до 1 атм в потоке несущего инертного газа с расходом от 1 до 6 литров в минуту, в который вводят водород в качестве газа-восстановителя в количестве от 1 до 4 литров в минуту.

Изобретение может быть использовано в химической промышленности при производстве бутадиена и конверсии оксида углерода (II). Способ получения мелкокристаллических ферритов-хромитов со структурой шпинели включает гомогенизацию исходных оксидов цинка (II), железа (III) и хрома (III).
Наверх