Когенерационная газотурбинная энергетическая установка

Изобретение относится к области теплоэнергетики, может быть использовано при разработке отопительных газотурбинных энергетических установок для теплоцентрали (ГТУ-ТЭЦ). Когенерационная газотурбинная энергетическая установка содержит компрессор низкого давления 1, компрессор высокого давления 2, первую камеру сгорания 3, газовую турбину высокого давления 4, газовую турбину низкого давления 5, электрогенератор 6, воздуховодяной теплообменник 7, содержащий горячий контур теплоносителя 8 и холодный контур теплоносителя 9, сетевой насос 10, газоводяной теплообменник высокого давления 11, содержащий собственные горячий контур теплоносителя 12 и холодный контур теплоносителя 13, вторую камеру сгорания 14, газоводяной теплообменник низкого давления 15, содержащий собственные горячий контур теплоносителя 16 и холодный контур теплоносителя 17. Выход компрессора низкого давления 1 соединен с входом горячего контура теплоносителя 8 воздуховодяного теплообменника 7, выход которого соединен с входом компрессора высокого давления 2. Выход компрессора высокого давления 2 соединен с первым входом первой камеры сгорания 3, второй вход которой выполнен с возможностью подачи природного газа. Выход первой камеры сгорания 3 соединен с входом газовой турбины высокого давления 4, выход которой соединен с входом горячего контура теплоносителя 12 газоводяного теплообменника высокого давления 11, выход которого соединен с первым входом второй камеры сгорания 14, второй вход которой выполнен с возможностью подачи природного газа. Выход второй камеры сгорания 14 соединен с входом газовой турбины низкого давления 5. Выход газовой турбины низкого давления 5 соединен с входом горячего контура теплоносителя 16 газоводяного теплообменника низкого давления 15. Сетевой насос 10 подключен к входу холодного контура теплоносителя 9 воздуховодяного теплообменника 7, выход которого соединен с входом холодного контура теплоносителя 13 газоводяного теплообменника высокого давления 11, выход которого соединен с входом холодного контура теплоносителя 17 газоводяного теплообменника низкого давления 15. Технический результат заключается в увеличении годовой выработки электрической энергии и снижении расхода топлива при совместном производстве электроэнергии и тепла. 2 ил.

 

Изобретение относится к области теплоэнергетики и может быть использовано при разработке отопительных газотурбинных энергетических установок для теплоцентрали (ГТУ-ТЭЦ).

Известна когенерационная газотурбинная энергетическая установка (Патент РФ №160537, МПК F02C 6/18, опубл. 20.03.2016), содержащая компрессор, камеру сгорания, газовую турбину, котел - утилизатор, имеющие между собой газовую связь, электрогенератор, подключенный к компрессору, промежуточный теплообменник, насос теплообменника, сетевой насос, пиковый водогрейный котел. Котел - утилизатор выполнен в виде двух газоводяных теплообменников.

Недостатком данного технического решения является низкий диапазон регулирования тепловой и электрической нагрузки.

Известна когенерационная газотурбинная энергетическая установка (Патент РФ №2528214, МПК F02C 6/18, опубл. 10.09.2014), содержащая компрессор низкого давления, компрессор высокого давления, камеру сгорания, газовую турбину высокого давления, газовую турбину низкого давления, два электрических генератора, теплофикационное устройство, теплообменное устройство.

Недостатком данного технического решения является низкий диапазон регулирования тепловой и электрической нагрузки, низкая тепловая экономичность, низкая температура сетевой воды на входе в газоводяной теплообменник (ГВТО) в неотопительный период.

Наиболее близкой по технической сущности к предлагаемому изобретению является когенерационная газотурбинная энергетическая установка, (Патент РФ №2727274, МПК F02C 6/18, опубл. 21.07.2020), которая содержит компрессор высокого давления, первую камеру сгорания, газовую турбину высокого давления, соединенные последовательно, газоводяной теплообменник высокого давления, электрогенератор, механически соединенный с компрессором, сетевой насос, последовательно соединенные газоводяной теплообменник высокого и низкого давления, вторую камеру сгорания, газовую турбину низкого давления. Выход газовой турбины высокого давления подключен к входу газоводяного теплообменника высокого давления, выход последнего к входу второй камеры сгорания, выход второй камеры сгорания подключен к входу газовой турбины низкого давления, выход которой подключен к входу газоводяного теплообменника низкого давления.

Недостатком данного технического решения являются низкая температура сетевой воды на входе в газоводяной теплообменник в неотопительный период и низкая тепловая экономичность.

Техническая задача, решаемая предлагаемым изобретением, заключается в повышении температуры сетевой воды на входе в газоводяной теплообменник и тепловой экономичности когенерационной газотурбинной энергетической установки.

Технический результат заключается в увеличении годовой выработки электрической энергии и снижении расхода топлива при совместном производстве электроэнергии и тепла.

Это достигается тем, что предлагаемая когенерационная газотурбинная энергетическая установка, содержащая компрессор высокого давления, первую камеру сгорания, газовую турбину высокого давления, газоводяной теплообменник высокого давления, содержащий горячий и холодный контуры теплоносителя, вторую камеру сгорания, газовую турбину низкого давления, газоводяной теплообменник низкого давления, соединенные последовательно, электрогенератор, сетевой насос, снабжена компрессором низкого давления и воздуховодяным теплообменником, содержащим собственные горячий и холодный контуры теплоносителей, при этом вход горячего контура теплоносителя воздуховодяного теплообменника подсоединен к выходу компрессора низкого давления, а его выход присоединен к входу компрессора высокого давления, причем вход холодного контура теплоносителя воздуховодяного теплообменника соединен с сетевым насосом, выход холодного контура теплоносителя воздуховодяного теплообменника присоединен к входу холодного контура теплоносителя газоводяного теплообменника высокого давления, а электрогенератор механически соединен с компрессором низкого давления.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена принципиальная тепловая схема когенерационной газотурбинной энергетической установки. На фиг.2. показаны графические зависимости КПД нетто по выработке электрической энергии, рассчитанный по физическому методу, на когенерационную газотурбинную энергетическую установку от температуры наружного воздуха для прототипа и предлагаемого изобретения.

Когенерационная газотурбинная энергетическая установка содержит компрессор низкого давления 1, компрессор высокого давления 2, первую камеру сгорания 3, газовую турбину высокого давления 4, газовую турбину низкого давления 5, электрогенератор 6, воздуховодяной теплообменник 7, содержащий горячий контур теплоносителя 8 и холодный контур теплоносителя 9, сетевой насос 10, газоводяной теплообменник высокого давления 11, содержащий собственные горячий контур теплоносителя 12 и холодный контур теплоносителя 13, вторую камеру сгорания 14, газоводяной теплообменник низкого давления 15, содержащий собственные горячий контур теплоносителя 16 и холодный контур теплоносителя 17, при этом газовая турбина высокого давления 3 и газовая турбина низкого давления 4 расположены на одном валу с компрессором высокого давления 2 и компрессором низкого давления 1, который механически соединен с электрогенератором 6.

Вход компрессора низкого давления 1 выполнен с возможностью подачи атмосферного воздуха, а выход компрессора низкого давления 1 соединен с входом горячего контура теплоносителя 8 воздуховодяного теплообменника 7, рабочим телом которого является частично сжатый воздух. Выход горячего контура теплоносителя 8 воздуховодяного теплообменника 7 соединен со входом компрессора высокого давления 2. Выход компрессора высокого давления 2 соединен с первым входом первой камеры сгорания 3, второй вход которой выполнен с возможностью подачи природного газа. Выход первой камеры сгорания 3 соединен с входом газовой турбины высокого давления 4, выход которой соединен с входом горячего контура теплоносителя 12 газоводяного теплообменника высокого давления 11, рабочим телом которого являются частично отработавшие продукты сгорания. Выход горячего контура теплоносителя 12 газоводяного теплообменника высокого давления 11 соединен с первым входом второй камеры сгорания 14, второй вход которой выполнен с возможностью подачи природного газа. Выход второй камеры сгорания 14 соединен с входом газовой турбины низкого давления 5. Выход газовой турбины низкого давления 5 соединен с входом горячего контура теплоносителя 16 газоводяного теплообменника низкого давления 15, выход которого выполнен с возможностью выброса уходящих газов в атмосферу. Сетевой насос 10 подключен к входу холодного контура теплоносителя 9 воздуховодяного теплообменника 7, рабочим телом которого является вода. Выход холодного контура теплоносителя 9 воздуховодяного теплообменника 7 соединен с входом холодного контура теплоносителя 13 газоводяного теплообменника высокого давления 11. Выход холодного контура теплоносителя 13 газоводяного теплообменника высокого давления 11 соединен с входом холодного контура теплоносителя 17 газоводяного теплообменника низкого давления 15, выход которого выполнен с возможностью передачи тепла потребителю. Воздуховодяной теплообменник 7 выполнен с регулируемым теплосъемом.

Когенерационная газотурбинная энергетическая установка работает следующим образом.

На вход компрессора низкого давления 1 подают атмосферный воздух, который после сжатия с выхода компрессора низкого давления 1 направляют на вход горячего контура теплоносителя 8 воздуховодяного теплообменника 7, где частично сжатый воздух передает теплоту сетевой воде, поступающей на вход холодного контура теплоносителя 9 воздуховодяного теплообменника 7 с помощью сетевого насоса 10. На выходе из горячего контура теплоносителя 8 воздуховодяного теплообменника 9 частично сжатый охлажденный воздух подают на вход компрессора высокого давления 2, после которого сжатый воздух подают на первый вход первой камеры сгорания 3. После сгорания горячей смеси и выработки полезной работы в газовой турбине высокого давления 4 горячие газообразные продукты сгорания направляют на вход горячего контура теплоносителя 12 газоводяного теплообменника высокого давления 11, где они передают теплоту сетевой воде, поступающей на вход холодного контура теплоносителя 13 газоводяного теплообменника высокого давления 11 после холодного контура теплоносителя 9 воздуховодяного теплообменника 7. На выходе из горячего контура теплоносителя 12 газоводяного теплообменника высокого давления 11 газообразные продукты сгорания подают на первый вход второй камеры сгорания 14, в которую на второй вход подают природный газ. После сгорания горячей смеси и выработки полезной работы в газовой турбине низкого давления 5 горячие газообразные продукты сгорания направляют на вход горячего контура теплоносителя 16 газоводяного теплообменника низкого давления 15. В газоводяном теплообменнике низкого давления 16 продукты сгорания передают теплоту сетевой воде, поступающей на вход холодного контура теплоносителя 17 газоводяного теплообменника 15 с выхода холодного контура теплоносителя 13 газоводяного теплообменника высокого давления 11. На выходе из горячего контура теплоносителя 16 газоводяного теплообменника низкого давления 15 газообразные продукты выбрасывают в атмосферу в виде уходящих газов. Сетевую воду с выхода холодного контура теплоносителя 17 газоводяного теплообменника 15 направляют к потребителю. Электрогенератор 6 используют для выработки полезной нагрузки, а также электрической энергии для питания компрессора низкого давления 1 и компрессора высокого давления 2.

Результаты расчетов когенерационной газотурбинной энергетической установки показали, что нагрев сетевой воды в воздуховодяном теплообменнике составляет 2-7°С, КПД нетто по производству электрической энергии по физическому методу растет до 3% по сравнению с прототипом при одинаковых начальных параметрах на входе в ГТУ и массовом расходе воздуха через компрессор, что позволяет повысить температуру сетевой воды на входе в холодный контур газоводяного теплообменника высокого давления и снизить расход топлива в когенерационной газотурбинной энергетической установке. На фиг.2 представлена графическая зависимость КПД нетто по производству электрической энергии по физическому методу когенерационной энергетической установки от температуры наружного воздуха, где линия 1 отражает зависимость для прототипа, а линия 2 - зависимость для заявляемой когенерационной газотурбинной энергетической установки.

Использование изобретения позволяет расширить регулировочный диапазон в неотопительный сезон и повысить тепловую экономичность за счет внедрения воздуховодяного теплообменника 7 между компрессором низкого давления 1 и компрессором высокого давления 2. Это позволяет повысить температуру на входе холодного контура теплоносителя 13 газоводяного теплообменника высокого давления 11 без использования рециркуляции потока с выхода холодного контура теплоносителя 13 газоводяного теплообменника высокого давления 11 на вход холодного контура теплоносителя 13 газоводяного теплообменника высокого давления 11 при одинаковых внешних условиях по сравнению с прототипом, что ведет к экономии электроэнергии и повышении максимальной тепловой нагрузки при низких температурах обратной сетевой воды в неотопительный сезон. Это также позволяет снизить температуру частично сжатого воздуха, проходящего по горячему контуру теплоносителя 8 воздуховодяного теплообменника 7, что уменьшает работу сжатия в компрессоре высокого давления 2, что ведет к повышению тепловой экономичности.

Когенерационная газотурбинная энергетическая установка, содержащая компрессор высокого давления, первую камеру сгорания, газовую турбину высокого давления, газоводяной теплообменник высокого давления, содержащий горячий и холодный контуры теплоносителя, вторую камеру сгорания, газовую турбину низкого давления, газоводяной теплообменник низкого давления, соединенные последовательно, электрогенератор, сетевой насос, отличающаяся тем, что снабжена компрессором низкого давления и воздуховодяным теплообменником, содержащим собственные горячий и холодный контуры теплоносителей, при этом вход горячего контура теплоносителя воздуховодяного теплообменника подсоединен к выходу компрессора низкого давления, а его выход присоединен к входу компрессора высокого давления, причем вход холодного контура теплоносителя воздуховодяного теплообменника соединен с сетевым насосом, выход холодного контура теплоносителя воздуховодяного теплообменника присоединен к входу холодного контура теплоносителя газоводяного теплообменника высокого давления, а электрогенератор механически соединен с компрессором низкого давления.



 

Похожие патенты:

Комбинированная утилизационная энергетическая газотурбинная установка компрессорной станции магистрального газопровода содержит приводную газотурбинную установку и субатмосферную утилизационную энергетическую установку, работающую по обратному циклу Брайтона.

Изобретение относится к области теплоэнергетики, может быть использовано при разработке отопительных газотурбинных энергетических установок для теплоцентрали (ГТУ-ТЭЦ) и направлено на повышение тепловой экономичности при совместном прохождении графиков тепловой и электрической нагрузок.

Газотурбинная установка 1 с входным устройством для воздуха 2, перед которым имеется теплообменник 3, соединенный насосом 7 с баком-аккумулятором 4, к баку присоединен также нагреватель 8 и теплообменник воздушного охлаждения 5.

Изобретение относится к области судовых энергетических установок, а более конкретно к теплообменным комплексам судовых энергетических установок, работающих на сжиженном природном газе, может быть использовано для систем регазификации и подготовки топливного газа, касается вопроса повышения энергоэффективности судна на основе использования вторичных энергетических ресурсов и решает задачу по повышению энергоэффективности теплообменного комплекса на судне.

Изобретение относится к области транспорта газа по магистральным газопроводам. Комбинированная энергетическая газотурбодетандерная установка компрессорной станции магистрального газопровода, состоящая из приводной газотурбинной установки, содержащей газогенератор, силовую газовую турбину, нагнетатель природного газа.

Газотурбодетандерная энергетическая установка содержит турбодетандер с регулирующим сопловым аппаратом, дожимной газовый компрессор, газотурбинную установку с регенеративным воздухоподогревателем, подогреватели газа высокого и низкого давления, воздухоохладитель, подогреватель теплоносителя, подводящий газопровод высокого давления (1,0-0,6 МПа), газопровод низкого давления, трубопроводы промежуточного теплоносителя (воды), котельные агрегаты ТЭС, систему управления давлением газа.

Изобретение относится к энергетике. Компрессорная станция магистрального газопровода состоит из приводного газоперекачивающего агрегата (ГПА), электроприводных ГПА и утилизационной энергетической газотурбинной установки (УЭГТУ).

Комбинированная утилизационная энергетическая газотурбинная установка компрессорной станции магистрального газопровода состоит из приводной газотурбинной установки утилизационной газотурбинной установки.
Изобретение относится к энергетике, а именно к системам генерации тепла для систем отопления и электроэнергии. В результате применения изобретения происходит прямое использование тепловой энергии продуктов сгорания топлива при одновременном получении тепла и электроэнергии за счет формирования смешанного потока продуктов сгорания и воздуха в камере смешения эжектора, который на выходе из эжектора имеет давление выше, чем давление воздуха на входе в эжектор.

Группа изобретений относится к регенеративным подогревателям. Теплоутилизационный парогенератор содержит корпус, змеевик испарителя низкого давления, разгонный змеевик предварительного подогрева выше по потоку от него и змеевик подогревателя питательной воды ниже по потоку от него.
Наверх