Электропроводящее покрытие



H01L33/62 - Полупроводниковые приборы по меньшей мере с одним потенциальным барьером или с поверхностным барьером, предназначенные для светового излучения, например инфракрасного; специальные способы или устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (соединение световодов с оптоэлектронными элементами G02B 6/42; полупроводниковые лазеры H01S 5/00; электролюминесцентные источники H05B 33/00)
H01L31/0465 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2748182:

Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") (RU)

Изобретение может быть использовано в оптических элементах из оптической керамики для коммутации элементов электрических схем оптико-электронных приборов, в том числе космического назначения, создания контактных электродов и электрообогрева входных окон из оптической керамики. Электропроводящее покрытие содержит нанесенные на подложку из керамики адгезионный, токопроводящий и контактный слои. Покрытие дополнительно содержит буферный слой, выполненный из хрома, который расположен между адгезионным и токопроводящим слоями и имеет хорошее сцепление с ними, при этом подложка выполнена из оптической керамики, адгезионный слой выполнен из оксида иттрия, а токопроводящий слой выполнен из алюминия. Подложка из оптической керамики может быть выполнена из селенида цинка или из сульфида цинка. Использование изобретения позволяет получить электропроводящее покрытие с хорошей адгезией к подложкам из оптической керамики, выдерживающее термическое воздействие до 250°С. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области оптоэлектроники и может быть использовано в оптических элементах из оптической керамики для коммутации элементов электрических схем оптико-электронных приборов, в том числе космического назначения, создания контактных электродов и электрообогрева входных окон из оптической керамики.

В настоящее время в оптоэлектронике широко используют оптические элементы из оптической керамики, которая прозрачна в видимом и инфракрасном диапазонах спектра в интервале длин волн от 0,5 мкм до 13 мкм и в этой области не имеет полос поглощения.

Однако оптические элементы из оптической керамики не могут быть использованы в оптико-электронных системах для коммутации элементов электрических схем, создания контактных электродов и электрообогрева, так как до настоящего времени не разработаны электропроводящие покрытия на поверхностях из оптической керамики. Известные электропроводящие покрытия для оптических элементов (ОСТ 3-1901-95. Покрытия оптических деталей. С.72-74) предназначены для применения на поверхностях из оптического и кварцевого стекла и не могут применяться на поверхностях из оптической керамики ввиду слабой адгезии к ней.

Известно электропроводящее покрытие, описанное в способе создания электропроводящих покрытий на диэлектрических деталях электровакуумных приборов (Авторское свидетельство СССР SU 860166, опубликовано 30.08.1981, МПК H01J 9/20), состоящее из индия или сплавов на его основе, нанесенных на такие диэлектрические подложки, как стекло, фотоситалл, кварц, корунд, лейкосапфир, слюда, монокристаллы фторидов металлов, керамика ГБ-7 и 22Хс.

Известны также металлические электропроводящие покрытия, находящие применение в микроэлектронике в качестве токопроводящих дорожек микросхем (Технология тонких пленок (справочник). Под ред. Л. Майселла, Р. Глэнга. Нью-Йорк. Пер. с англ. Под ред. М.И. Елинсона, Г.Г. Смолко, Т.2. М, «Сов. радио», 1977, с. 729, Б. Межсоединения, с. 730, В. Типичные материалы), которые состоят из металлического токопроводящего слоя, расположенного на подложке из кремния.

Прототипом является металлическое электропроводящее покрытие, описанное в способе создания токопроводящих дорожек (Патент RU 2494492, МПК H01L 21/28, опубликован 27.09.2013, фиг. 1). Электропроводящее покрытие (токопроводящая дорожка) на подложке из неоптической керамики (оксид алюминия, нитрид алюминия) содержит адгезионный слой из хрома, токопроводящий слой из меди, барьерный слой из никеля, служащий для защиты токопроводящего медного слоя от окисления и ограничения миграции атомов меди, и контактный слой из золота, служащий для пайки.

Общим недостатком аналогов и прототипа является то, что используемые при их получении металлы - как с хорошей электропроводимостью (алюминий, медь, серебро, индий), так и хром, используемый в качестве адгезионного слоя, обладают плохой адгезией к оптической керамике, в частности к селениду цинка и сульфиду цинка вследствие слабости сил межмолекулярного взаимодействия между ними.

Кроме того, вследствие больших внутренних напряжений использование меди в качестве токопроводящего слоя толщиной более 1000 нм в составе электропроводящего покрытия на оптической керамике, полученного методами напыления в вакууме, приводит к разрушению покрытия. Электропроводящие покрытия на оптической керамике из материалов, используемых в прототипе, непрочны, склонны к отслаиванию (не выдерживают испытания на адгезию по ГОСТ Р ИСО 9211-4-2016) и не выдерживают термического воздействия при пайке.

Также недостатком является то, что высокая миграционная активность атомов меди, используемой в качестве токопроводящего слоя, требует наличия в электропроводящем покрытии дополнительного барьерного слоя.

Технической задачей, на решение которой направлено изобретение, является разработка электропроводящего покрытия на деталях из оптической керамики с заданным электрическим сопротивлением от 0,5 до 20 Ом, обладающего хорошей адгезией к подложкам из оптической керамики, выдерживающего термическое воздействие при пайке.

Техническая задача решается тем, что электропроводящее покрытие, содержащее нанесенные на подложку из керамики адгезионный, токопроводящий и контактный слои, согласно настоящему изобретению, дополнительно содержит буферный слой, выполненный из хрома, который расположен между адгезионным и токопроводящим слоями, и имеет хорошее сцепление с ними, при этом подложка выполнена из оптической керамики, адгезионный слой выполнен из оксида иттрия, а токопроводящий слой выполнен из алюминия. Подложка из оптической керамики может быть выполнена из селенида цинка или из сульфида цинка.

На фиг. 1 изображена конструкция предлагаемого электропроводящего покрытия (поперечный разрез).

Электропроводящее покрытие содержит нанесенные в вакууме на подложку 1 из керамики адгезионный 2, токопроводящий 4 и контактный 5 слои.

Отличием предлагаемого покрытия является то, что подложка 1, выполненная из оптической керамики, дополнительно содержит буферный слой 3, выполненный из хрома толщиной от 20 до 30 нм, который расположен между адгезионным 2 и токопроводящим 4 слоями.

Подложка 1 из оптической керамики может быть выполнена из селенида цинка или из сульфида цинка.

Адгезионный слой 2 выполнен из оксида иттрия толщиной от 8 до 20 нм, который обеспечивает надежное сцепление электропроводящего покрытия с подложкой 1 из оптической керамики.

Токопроводящий слой 4 выполнен из алюминия толщиной от 1000 до 5000 нм, обеспечивающего электропроводные характеристики покрытия. Токопроводящий слой из алюминия не требует нанесения барьерного слоя, так как по сравнению с медью алюминий не обладает большой миграционной подвижностью атомов.

Контактный слой 5 выполнен из меди толщиной от 100 до 150 нм и обеспечивает пайку электрических проводов припоями на основе олова.

Оптимальные толщины адгезионного, буферного, токопроводящего и контактного слоев, в составе электропроводящего покрытия, определены экспериментально.

Пример конкретного выполнения.

На подложку 1 из селенида цинка, размещенную в камере вакуумной установки, при давлении не менее 10-3 Па и температуре не менее 150°С методом электронно-лучевого испарения в вакууме напыляют адгезионный слой 2 толщиной 10 нм из оксида иттрия, обладающего хорошей адгезией к селениду цинка.

После этого тем же методом при тех же условиях напыляют буферный слой 3 толщиной 25 нм из хрома, имеющего хорошее сцепление как с оксидом иттрия, так и с алюминием.

Затем при тех же условиях методом электронно-лучевого испарения в вакууме напыляют токопроводящий слой 4 толщиной 2700 нм из алюминия, имеющего высокую электропроводимость (ρ=0,028 Ом×мм2/м). Необходимая толщина токопроводящего слоя 4 рассчитана исходя из площади его сечения и заданного сопротивления (5 Ом).

Далее при тех же условиях методом электронно-лучевого испарения в вакууме поверх токопроводящего слоя 4 напыляют контактный слой 5 толщиной 100 нм из меди, обеспечивающий пайку припоями на основе олова.

Адгезионный слой 2 обеспечивает необходимое сцепление буферного слоя 3 с подложкой 1 из оптической керамики.

Буферный слой 3 обеспечивает необходимое сцепление между адгезионным 2 и электропроводящим 4 слоями.

Токопроводящий слой 4 обеспечивает необходимое значение электросопротивления.

Контактный слой 5 обеспечивает надежную пайку электрических проводов припоями на основе олова.

Предлагаемое электропроводящее покрытие, содержащее, нанесенные на подложку из оптической керамики (селенид цинка, сульфид цинка), адгезионный, буферный, токопроводящий и контактный слои, существенно превосходит покрытие-прототип по достигаемым эксплуатационным характеристикам, так как выдерживает испытание на адгезию по методу 02 ГОСТ Р ИСО 9211-4-2016 (интенсивность нагрузки 02), выдерживает термическое воздействие при пайке до температуры 250°С за счет применения адгезионного и буферного слоев.

Таким образом, использование предлагаемого изобретения, благодаря наличию в электропроводящем покрытии адгезионного, буферного, токопроводящего и контактного слоев из предлагаемых материалов, позволяет получить электропроводящее покрытие с хорошей адгезией к подложкам из оптической керамики, выдерживающее термическое воздействие до 250°С и обеспечивающее коммутацию элементов электрических схем оптико-электронных приборов, в том числе космического назначения, создание контактных электродов и электрообогрев входных окон из оптической керамики.

1. Электропроводящее покрытие, содержащее нанесенные на подложку из керамики адгезионный, токопроводящий и контактный слои, отличающееся тем, что оно дополнительно содержит буферный слой, выполненный из хрома, который расположен между адгезионным и токопроводящим слоями и имеет хорошее сцепление с ними, при этом подложка выполнена из оптической керамики, адгезионный слой выполнен из оксида иттрия, а токопроводящий слой выполнен из алюминия.

2. Электропроводящее покрытие по п. 1, отличающееся тем, что подложка из оптической керамики выполнена из селенида цинка.

3. Электропроводящее покрытие по п. 1, отличающееся тем, что подложка из оптической керамики выполнена из сульфида цинка.



 

Похожие патенты:

Способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости.

Изобретение относится к области оптических систем связи, а именно, к истинно однофотонным источникам оптического излучения и может быть использовано для создания высокозащищенных систем передачи информации на основе принципа квантовой криптографии и реализации протокола квантового распределения ключа (КРК, QKD) через существующие оптоволоконные сети.

Настоящее изобретение относится к способам изготовления магниторезистивного спинового светодиода, в котором с помощью магнитного поля можно независимо управлять интенсивностью излучения и степенью циркулярной поляризации.

Изобретение относится к композиции краски для впечатывания, пригодной для впечатывания в структурированную поверхность эластомерного штампа. Композиция краски для впечатывания содержит наночастицы оксида переходного металла.

Светоизлучающее устройство включает в себя подложку, светоизлучающий элемент и уплотнительный полимерный элемент. Подложка включает в себя гибкую основу, множество проводных участков и желобковый участок.

Светоизлучающее устройство включает основание; лазерный элемент, расположенный на верхней поверхности основания и выполненный с возможностью излучения лазерного пучка продольно; люминесцентный элемент, расположенный на верхней поверхности основания; первый оптический элемент, расположенный на верхней поверхности основания и имеющий входную боковую поверхность, через которую входит лазерный пучок во время эксплуатации, и выходную боковую поверхность, через которую выходит лазерный пучок во время эксплуатации, и предназначенный для изменения направления распространения лазерного пучка таким образом, чтобы лазерный пучок, прошедший через первый оптический элемент, облучал верхнюю поверхность люминесцентного элемента; и крышку, содержащую: светозащитный элемент и светопропускающий элемент, расположенный над сквозным отверстием, лазерным элементом, люминесцентным элементом и первым оптическим элементом, при этом светозащитный элемент имеет выступающий участок, продолжающийся вниз в положение, которое ниже верхнего края первого оптического элемента, так, чтобы быть обращенным к выходной боковой поверхности первого оптического элемента.

Настоящее изобретение раскрывает водонепроницаемую конструкцию LED-дисплея, включающую нижний корпус дисплея, первое уплотнительное кольцо и водонепроницаемую крышку.

Изобретение относится к области полупроводниковой оптоэлектроники, а именно к источникам излучения инфракрасного и терагерцевого диапазонов длин волн, предназначенным, в основном, для использования в оптоэлектронике, в измерительной технике, в медицине, в системах безопасности, а также в качестве элементной базы квантовых компьютеров.

Изобретение относится к технологии получения перовскитных структур для тонкопленочных оптоэлектронных устройств в технологических процессах производства светодиодов, солнечных элементов и фотодетекторов со спектральным диапазоном от 400 до 780 нм, запрещенной зоной от 3,1 до 1,57 эВ.

Светоизлучающее устройство содержит подложку, светоизлучающий элемент, расположенный на подложке и имеющий верхнюю поверхность и боковую поверхность; отражающий слой, расположенный на верхней поверхности светоизлучающего элемента; первый светопропускающий элемент, имеющий первую поверхность, контактирующую с указанной боковой поверхностью светоизлучающего элемента, и вторую поверхность, которая наклонена к подложке в направлении от светоизлучающего элемента; второй светопропускающий элемент, контактирующий с указанной второй поверхностью и закрывающий светоизлучающий элемент; отражающий элемент, выполненный с возможностью отражать свет из светоизлучающего элемента, при этом отражающий элемент расположен в области, снаружи второго светопропускающего элемента, при этом коэффициент преломления первого светопропускающего элемента меньше коэффициента преломления второго светопропускающего элемента.

Настоящее изобретение относится к многопереходному солнечному элементу в форме стопки с передней стороной, контактирующей с задней стороной, имеющему образующую заднюю сторону этого многопереходного солнечного элемента германиевую подложку, германиевый субэлемент и по меньшей мере два субэлемента из элементов III-V групп, следующие друг за другом в указанном порядке, а также по меньшей мере одно сквозное контактное отверстие, доходящее от передней стороны многопереходного солнечного элемента через субэлементы до задней стороны, и проходящий через это сквозное контактное отверстие металлический замыкающийся контакт, причем это сквозное контактное отверстие имеет сплошную боковую поверхность и овальный контур в поперечном сечении, причем диаметр сквозного контактного отверстия ступенчато уменьшается в направлении от передней стороны к задней стороне многопереходного солнечного элемента, причем передняя сторона германиевого субэлемента образует выступающую внутрь в сквозное контактное отверстие, огибающую его первую ступеньку, имеющую первую глубину выступа ступеньки, и при этом образуется выступающая внутрь в сквозное контактное отверстие, огибающая его вторая ступенька, имеющая вторую глубину выступа ступеньки, от области германиевого субэлемента, расположенной ниже р-n перехода этого германиевого субэлемента.
Наверх