Способ изготовления мелкозалегающих переходов


H01L21/26506 - Способы и устройства для изготовления или обработки полупроводниковых приборов или приборов на твердом теле или их частей (способы и устройства, специально предназначенные для изготовления и обработки приборов, относящихся к группам H01L 31/00- H01L 49/00, или их частей, см. эти группы; одноступенчатые способы изготовления, содержащиеся в других подклассах, см. соответствующие подклассы, например C23C,C30B; фотомеханическое изготовление текстурированных поверхностей или поверхностей с рисунком, материалы или оригиналы для этой цели; устройства, специально предназначенные для этой цели вообще G03F)[2]

Владельцы патента RU 2748335:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) (RU)

Изобретение относится к области технологии производства полупроводниковых приборов. Способ формирования активных областей полевых транзисторов включает формирование активных областей полевого транзистора на кремниевой подложке n-типа проводимости с удельным сопротивлением 4,5 Ом*см. На подложку наносят слой титана Ti толщиной 110 нм и проводят термообработку при температуре 950°C в течение 70 с в атмосфере азота N2, затем выращивают пленку пиролитического окисла толщиной 150 нм и проводят ионную имплантацию бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и с последующей термообработкой при температуре 900°C в течение 20 с в атмосфере азота N2. Изобретение обеспечивает снижение токов утечек, технологичность, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженным значением тока утечки.

Известен способ изготовления комплементарных полевых транзисторов [Пат.5290720 США, МКИ H01L 21/265] путем формирования самосовмещенных силицидных затворных электродов. Исходная структура с поликремниевыми затворами над соседними карманами р- и п- типа покрывается слоями оксида кремния и стекла. Реактивным ионным травлением формируются пристеночные кремниевые спейсеры, слой стекла удаляется, проводится ионная имплантация в области истока и стока, затворные структуры покрываются тонким слоем оксида, создаются пристеночные нитрид кремниевые Si3N4 спейсеры, слой оксида удаляется, наносится слой титана Ti и проводится термообработка с образованием силицидной перемычки между поликремниевым электродом и боковыми кремниевыми электродами.

В таких приборах из-за не технологичности формирования пристеночных кремниевых спейсеров образуется большое количество дефектов, которые ухудшают электрические параметры приборов.

Известен способ изготовления полупроводникового прибора [Заявка 2133964 Япония, МКИ H01L 29/46] путем добавления 1-10ат.% углерода в слой нитрида титана TiN, который служит в качестве барьерного слоя. Такая добавка улучшает качество нитрида титана TiN, предохраняет его от появления механических напряжений и растрескиваний после термообработок. При введении углерода сохраняется сопротивление слоя нитрида титана TiN.

Недостатками этого способа являются: высокие значения токов утечек, высокая дефектность, низкая технологичность.

Задача, решаемая изобретением: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается диффузией примеси из легированного слоя силицида, который формируется: путем нанесения слоя титана Ti толщиной 110нм и термообработкой при температуре 950°С, в течение 70 с в атмосфере азота N2, с последующим выращиванием пленки пиролитического окисла толщиной 150 нм и проведением ионной имплантации бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и затем термообработкой при температуре 900°С в течение 20 с, в атмосфере азота N2.

Технология способа состоит в следующем: на кремниевую подложку п-типа проводимости с удельным сопротивлением 4,5 Ом*см, наносят слой титана Ti толщиной 110 нм и проводят термообработку при температуре 950°С, в течение 70с в атмосфере азота N2, затем выращивают пленку пиролитического окисла толщиной 150нм и проводят ионную имплантацию бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и последующей термообработкой при температуре 900°С в течение 20с, в атмосфере азота N2. Слой титана Ti и пленку пиролитического окисла формировали по стандартной технологии.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Таблица

Параметры полупроводникового прибора, изготовленного по стандартной технологии Параметры полупроводникового прибора, изготовленного по предлагаемой технологии
плотность дефектов, см-2 токи утечки,
1012,А,
плотность дефектов, см-2 токи утечки,
1012,А,
1 23 5,3 7,2 1,7
2 24 7.5 6,2 1,3
3 28 7,8 6,7 1,9
4 27 8,3 5,4 1,4
5 24 8,5 5,1 1,8
6 26 5,7 6,3 1,3
7 22 8,4 7,4 1,7
8 27 7,7 4,8 1,6
9 25 7,5 5,3 1,4
10 26 0,76 5,4 1,9
11 23 7,1 6,1 1,3
12 21 6,7 7,3 1,6
13 22 6,8 8,1 1,5

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 16,9 %.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления мелкозалегающих переходов путем формирования их диффузией примеси из легированного слоя силицида, который формируется: путем нанесения слоя титана Ti толщиной 110 нм и термообработкой при температуре 950 °С, в течение 70 с в атмосфере азота N2, с последующим выращиванием пленки пиролитического окисла толщиной 150 нм и проведением ионной имплантации бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и затем термообработкой при температуре 900 °С в течение 20 с, в атмосфере азота N2, позволяет повысит процент выхода годных приборов и улучшит их надёжность.

Технический результат: снижение токов утечек, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

Способ формирования активных областей полевых транзисторов, включающий формирование активных областей полевого транзистора на кремниевой подложке, отличающийся тем, что формирование активных областей полевого транзистора осуществляют на кремниевой подложке n-типа проводимости с удельным сопротивлением 4,5 Ом*см, на которую наносят слой титана Ti толщиной 110 нм и проводят термообработку при температуре 950°C в течение 70 с в атмосфере азота N2, затем выращивают пленку пиролитического окисла толщиной 150 нм и проводят ионную имплантацию бора с энергией 50 кэВ, дозой 7,5*1015 см-2 и с последующей термообработкой при температуре 900°C в течение 20 с в атмосфере азота N2.



 

Похожие патенты:

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Изобретение предлагает способ изготовления тонкой пленки низкотемпературного поликристаллического кремния, включающий этап выращивания слоя аморфного кремния, этап первоначального выращивания слоя оксида кремния на слое аморфного кремния, затем формирование некоторого множества вогнутых поверхностей на слое оксида кремния, которые будут отражать лучи света, вертикально проецируемые на оксид кремния, и, последним, этап проецирования луча эксимерного лазера на слой аморфного кремния через слой оксида кремния, чтобы преобразовать слой аморфного кремния в тонкую пленку низкотемпературного поликристаллического кремния.

Изобретение относится к способу перекристаллизации для получения самоподдерживающихся кристаллических кремниевых лент с размером зерна более 1 мм. .
Изобретение относится к области производства подложек из лейкосапфира для гетероэпитаксии нитридов III группы. .

Изобретение относится к полупроводниковой технологии и может быть использовано для изготовления приборных структур. .

Изобретение относится к материаловедению может быть использовано при изготовлении полупроводниковых приборов. Состав меза-травителя для антимонида индия ориентации (100) включает плавиковую кислоту, перекись водорода и воду при следующем соотношении компонентов (объемные доли): 2 части 46% плавиковой кислоты ОСЧ, 2 части 30% перекиси водорода ОСЧ и 450 частей деионизованной воды.
Наверх