Способ получения горячекатаного проката повышенной прочности

Изобретение относится к получению горячекатаного проката из низколегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки. Проводят выплавку, разливку в слябы, нагрев слябов, горячую прокатку, первую стадию водяного охлаждения, паузу в водяном охлаждении с проведением воздушного охлаждения, вторую стадию водяного охлаждения и смотку в рулон. Нагрев слябов проводят до температуры 1150-1250°С, горячую прокатку проводят с температурой конца прокатки 800-900°С. На первой и второй стадиях водяное охлаждение представляет собой ламинарное водяное охлаждение. На первой стадии ламинарное водяное охлаждение проводят до температуры 680-750°С, на второй стадии – до температуры 150-350°С. Длительность упомянутой паузы в водяном охлаждении, составляющую 2,5-5 с, определяют из выражения tп=2,48-0,019Тк.п+0,024Тп, где tп - расчетная длительность паузы в водяном охлаждении, с, Тк.п - температура конца горячей прокатки, °С, Тп – температура, при которой осуществляют паузу в водяном охлаждении, °С. Обеспечивается требуемый уровень механических свойств и стабилизация их получения. 2 пр.

 

Изобретение относится к металлургии, конкретно к производству горячекатаного проката повышенной прочности и стойкости к циклическим нагрузкам из низколегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки.

Известны способы горячей прокатки полос, включающие горячую прокатку полос в черновой и чистовой стадиях прокатки на толстолистовых станах горячей прокатки, а также охлаждение полос водой на отводящем рольганге (см., например: Технология прокатного производства. В 2-х книгах. Кн. 2. Справочник: Беняковский М.А., Богоявленский К.Н., Виткин А.И. и др. М.: Металлургия, 1991. - 423 с. Патент РФ №2037536). Сталь, обработанная по этому способу, отличается нестабильностью механических свойств и зачастую не обеспечивает требуемого уровня механических свойств проката.

Известен способ производства горячекатаной полосы (по пат. CN 103031493), включающий разливку слябов из стали, содержащей компоненты при следующем соотношении, масс. %: С 0,06% -0,15%, Si 0,05% -0,5%, Mn 1,0%-1,8%, Al 0,01%-0,08%, Cr 0,3%-1,5%, P не более 0,02% и S не более 0,005%, остальное - Fe и неизбежные примеси; нагрев сляба до 1200±20°С в течении 1-3 часов; черновую горячую прокатку с завершением при температуре не менее 1050°С; чистовую горячую прокатку с температурой конца прокатки 820-880°С; охлаждение после прокатки с использованием непрерывного ламинарного охлаждения со скоростью 20-40°С/с и смотка при температуре 530-600°С. Недостатком данного способа является то, что сталь, обработанная по нему, отличается нестабильностью механических свойств и зачастую не обеспечивает требуемого уровня механических свойств проката.

Наиболее близким к описываемому изобретению по технической сущности и достигаемому результату является способ производства горячекатаной полосы (по пат. CN 102517496), включающий разливку слябов из стали, содержащей компоненты при следующем соотношении, масс. %: С 0,06%-0,10%, Si 0,40%-0,60%, Mn 1,00%-2,00%, P не более 0,02%, S не более 0,02%, Ti 0,08%-0,12%, остальное - Fe и неизбежные примеси; нагрев слябов до температуры 1180-1250°С; черновую горячую прокатку, чистовую горячую прокатку, завершающуюся при температуре 750-850°С; 1-ю стадию ламинарного водяного охлаждения от температуры конца горячей прокатки до температуры 650-700°С со скоростью 30-50°С/с; стадию охлаждения на воздухе в течении 8-15 сек; 2-ю стадию ламинарного водяного охлаждения со скоростью не менее 40°С/с до температуры 200-300°С и смотку в рулон.

Недостатком данного способа является то, что сталь, обработанная по нему, отличается нестабильностью механических свойств и зачастую не обеспечивает требуемого уровня механических свойств проката.

Для достижения требуемого уровня механических свойств необходимым условием является формирование в стали двухфазной феррит-бейнитной структуры, которая обеспечивает требуемые пластичность и прочность стали, а также отношение предела текучести к пределу прочности. Получение целевого содержания феррита в стали обеспечивается во время первой стадии ламинарного водяного охлаждения и последующей паузы (воздушного охлаждения), тогда как получение целевого содержания бейнита достигается во время второй стадии ламинарного водяного охлаждения.

Однако, скорость превращения аустенита в феррит сильно зависит от температуры при которой происходит пауза в водяном охлаждении. При снижении данной температуры от точки Ar3 до точки Ar1 или температуры начала бейнитного превращения, скорость формирования феррита увеличивается. Таким образом, при пониженных температурах паузы в ламинарном охлаждении с ростом длительности паузы возникает риск получения избыточного количества феррита, тогда как при повышенных температурах и недостаточной длительности паузы - риск получения избыточного количества бейнита.

Предлагаемое техническое решение направлено на решение задачи по обеспечению требуемого уровня механических свойств и стабилизации их получения.

Указанный технический результат достигается при обработке по способу, включающему следующие технологические операции: выплавка, разливка, нагрев слябов до температуры 1150-1250°С, черновая горячая прокатка, чистовая горячая прокатка с температурой конца прокатки 800-900°С, первая стадия ламинарного водяного охлаждения до температуры 680-750°С, пауза в водяном охлаждении (воздушное охлаждение) в течении 2,5-5 сек, вторая стадия ламинарного водяного охлаждения до температуры 150-350°С и смотка в рулон. При этом сталь содержит: С 0,06-0,1%, Si не более 0,3%, Mn 0,7-1,5%, P не более 0,05%, Al не более 0,1%, Cr не более 0,8%, Nb не более 0,07%, остальное Fe и неизбежные примеси. Длительность паузы в водяном охлаждении определяется из выражения:

tп.=2,48-0,019Тк.п,+0,024Тп.,

где tп. - расчетная длительность паузы в водяном охлаждении, сек.,

Тк.п.- температура конца горячей прокатки, °С,

Тп. - температура при которой происходит пауза в водяном охлаждении, °С.

Пример 1.

Горячекатаную низколегированную сталь с содержанием С 0,75%, Mn 1,3%, Si 0,1%, P 0,04%, Cr 0,5%, Al 0,03%, Nb 0,04%, остальное - Fe и примеси выплавляли в конвертере, слябы получали путем непрерывной разливки. Нагрев слябов для горячей прокатки осуществляли с методических печах до температуры 1200°С. Горячую прокатку осуществляли на непрерывном широкополосном стане горячей прокатки на толщину 3,8 мм, температура конца горячей прокатки составляла 890°С. После прокатки производилось охлаждение полосы при помощи установки ускоренного охлаждения с ламинарной подачей воды до температуры 760°С. Далее производилось отключение подачи воды на части форсунок. Количество отключаемых форсунок рассчитывалось исходя из скорости движения полосы с учетом необходимого времени паузы в охлаждении для каждой точки полосы длительностью 3,7 сек. Далее опять включались форсунки подачи воды и полоса охлаждалась до температуры в интервале 200-300°С. После охлаждения полоса сматывалась в рулон. После остывания рулона до температуры 30°С от него отбирались пробы для механических испытаний на соответствие EN 10338-2015. После испытаний были получены следующие результаты: предел прочности - 627-637 МПа, предел текучести - 534-553 МПа, относительное удлинение - 20-21%. Данные значения соответствуют марке HDT580F по EN 10338-2015.

Пример 2.

Горячекатаную низколегированную сталь с содержанием С 0,75%, Mn 1,3%, Si 0,1%, P 0,04%, Cr 0,5%, Al 0,03%, Nb 0,04%, остальное - Fe и примеси выплавляли в конвертере, слябы получали путем непрерывной разливки. Нагрев слябов для горячей прокатки осуществляли с методических печах до температуры 1250°С. Горячую прокатку осуществляли на непрерывном широкополосном стане горячей прокатки на толщину 3,3 мм, температура конца горячей прокатки составляла 855°С. После прокатки производилось охлаждение полосы при помощи установки ускоренного охлаждения с ламинарной подачей воды до температуры 690°С. Далее производилось отключение подачи воды на части форсунок. Количество отключаемых форсунок рассчитывалось исходя из скорости движения полосы с учетом необходимого времени паузы в охлаждении для каждой точки полосы длительностью 2,8 сек. Далее опять включались форсунки подачи воды и полоса охлаждалась до температуры в интервале 200-300°С.

После охлаждения полоса сматывалась в рулон. После остывания рулона до температуры 30°С от него отбирались пробы для механических испытаний на соответствие EN 10338-2015. После испытаний были получены следующие результаты: предел прочности - 629-656 МПа, предел текучести - 541-560 МПа, относительное удлинение - 17-20%. Данные значения соответствуют марке HDT580F по EN 10338-2015.

Способ получения горячекатаного проката из низколегированной стали, включающий выплавку, разливку в слябы, нагрев слябов, горячую прокатку, первую стадию водяного охлаждения, паузу в водяном охлаждении с проведением воздушного охлаждения, вторую стадию водяного охлаждения и смотку в рулон, отличающийся тем, что нагрев слябов проводят до температуры 1150-1250°С, горячую прокатку проводят с температурой конца прокатки 800-900°С, при этом на первой и второй стадиях водяное охлаждение представляет собой ламинарное водяное охлаждение, причем на первой стадии ламинарное водяное охлаждение проводят до температуры 680-750°С, на второй стадии – до температуры 150-350°С, при этом длительность упомянутой паузы в водяном охлаждении, составляющую 2,5-5 с, определяют из выражения: tп=2,48-0,019Тк.п+0,024Тп, где tп - расчетная длительность паузы в водяном охлаждении, с, Тк.п - температура конца горячей прокатки, °С, Тп – температура, при которой осуществляют паузу в водяном охлаждении, °С.



 

Похожие патенты:

Группа изобретений относится к стальному материалу для магистральных труб, способу получения стального материала для магистральных труб и способу изготовления магистральной трубы и может быть использована при изготовлении магистральных труб, используемых для транспортировки нефти и природного газа, а также для подводных трубопроводов.

Изобретение относится к способу изготовления горячекатаного и отожженного стального листа и может быть использовано в автомобильной промышленности. Способ изготовления холоднокатаного стального листа, включающий следующие стадии: разливка стали, содержащей, в мас.

Изобретение относится к электротехническому стальному листу с ориентированной зеренной структурой, содержащему основной стальной лист, содержащий мас.%: C 0,005 или меньше, Si от 2,50 до 4,00, Mn от 0,010 до 0,500, N 0,010 или меньше, P 0,0300 или меньше, растворимый Al 0,005 или меньше, S 0,010 или меньше, Bi от 0 до 0,020, Sn от 0 до 0,500, Cr от 0 до 0,500, Cu от 0 до 1,000, Se от 0 до 0,080, Sb от 0 до 0,50, и остаток из Fe и примесей, стеклянное покрытие и создающее натяжение изоляционное покрытие.

Группа изобретений относится к покрывающему раствору для формирования изолирующей пленки для электротехнического стального листа с ориентированной зеренной структурой и способу производства упомянутого электротехнического стального листа.
Изобретение относится к области металлургии, а именно к способу получения высокопрочного толстолистового стального проката на реверсивном стане, и может быть использовано для получения низколегированных трубных сталей.

Группа изобретений относится к области металлургии, в частности к получению высокопрочного толстолистового стального проката на реверсивном стане, и может быть использовано для изготовления указанной продукции из низколегированных сталей.

Изобретение относится к области металлургии, а именно к производству текстурированного листа из электротехнической стали, используемого в качестве материала железного сердечника электротехнических приборов.
Изобретение относится к области металлургии. Высокопрочная горячекатаная стальная полоса с высокой устойчивостью к образованию краевых трещин, изготовленная из стали с пределом упругости Rp0.2 от 660 до 820 МПа, значением BH2 более 30 МПа и коэффициентом раздачи отверстия более 30%, и имеющей следующий химический состав, вес.%: C 0,04 до 0,12, Si 0,03 до 0,8, Mn 1 до 2,5, P макс.

Изобретение относится к области металлургии, а именно к изготовлению стальной полосы из многофазной стали. Способ изготовления стальной полосы из многофазной стали с минимальной прочностью на разрыв 980 МПа в незакаленном состоянии, содержащей, вес.%: C ≥ 0,075 до ≤ 0,115, Si ≥ 0,400 до ≤ 0,500, Mn ≥ 1,900 до ≤ 2,350, Cr ≥ 0,250 до ≤ 0,400, Al ≥ 0,010 до ≤ 0,060, N ≥ 0,0020 до ≤ 0,0120, P ≤ 0,020, S ≤ 0,0020, Ti ≥ 0,005 до ≤ 0,060, Nb ≥ 0,005 до ≤ 0,060, V ≥ 0,005 до ≤ 0,020, B ≥ 0,0005 до ≤ 0,0010, Mo ≥ 0,200 до ≤ 0,300, Ca ≥ 0,0010 до ≤ 0,0060, Cu ≤ 0,050, Ni ≤ 0,050, Sn ≤ 0,040, H ≤ 0,0010, остальное - железо и примеси, включает изготовление предварительной прокаткой полосовой заготовки, выбор толщины сляба и определенной, но переменной толщины полосовой заготовки, горячую прокатку полосовой заготовки со степенью обжатия 72-87%, намотку горячекатаной полосы при температуре начала образования бейнита, холодную прокатку горячекатаной полосы с получением холоднокатаной полосы с требуемой конечной толщиной, нагревание холоднокатаной полосы при непрерывном отжиге до температуры 700-950°C, охлаждение отожженной стальной полосы.

Изобретение относится к изготовлению бандажных колец для роторов турбогенераторов из стали 15Х15Г16АНФ. Осуществляют выплавку слитка из стали 15Х15Г16АНФ, его ковку, прошивку слитка, совмещенную с аустенизацией его стали, до получения кольцевой заготовки.

Изобретение относится к стальной подложке с нанесенным покрытием, используемой в сталелитейной промышленности. Подложка (5) имеет следующую композицию, мас.%: 0,31 ≤ C ≤ 1,2, 0,1 ≤ Si ≤ 1,7, 0,15 ≤ Mn ≤ 1,1, P ≤ 0,01, S ≤ 0,1, Cr ≤ 1,0, Ni ≤ 1,0, Mo ≤ 0,1, при необходимости один или несколько элементов из: Nb ≤ 0,05, B ≤ 0,003, Ti ≤ 0,06, Cu ≤ 0,1, Co ≤ 0,1, N ≤ 0,01 и V ≤ 0,05, остальное - железо и неизбежные примеси.
Наверх