Рибонуклеопротеиновый комплекс для редактирования генома человека



Рибонуклеопротеиновый комплекс для редактирования генома человека
Рибонуклеопротеиновый комплекс для редактирования генома человека
Рибонуклеопротеиновый комплекс для редактирования генома человека
Рибонуклеопротеиновый комплекс для редактирования генома человека
Рибонуклеопротеиновый комплекс для редактирования генома человека
C12N15/111 - Получение мутаций или генная инженерия; ДНК или РНК, связанные с генной инженерией, векторы, например плазмиды или их выделение, получение или очистка; использование их хозяев (мутанты или микроорганизмы, полученные генной инженерией C12N 1/00,C12N 5/00,C12N 7/00; новые виды растений A01H; разведение растений из тканевых культур A01H 4/00; новые виды животных A01K 67/00; использование лекарственных препаратов, содержащих генетический материал, который включен в клетки живого организма, для лечения генетических заболеваний, для генной терапии A61K 48/00 пептиды вообще C07K)

Владельцы патента RU 2749741:

Федеральное государственное автономное образовательное учреждение высшего образования "Российский национальный исследовательский медицинский университет имени Н.И. Пирогова" Министерства здравоохранения Российской Федерации (ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России) (RU)

Изобретение относится к области биотехнологии, в частности к рибонуклеопротеиновому комплексу для редактирования генома человека путем вставки в него интересующей последовательности, который включает белок spCas9, связанный с sgRNA-PP7, кодируемой последовательностью, которая связана с эффекторным химерным белком. Изобретение эффективно при моделировании генетических заболеваний человека на клеточных системах. 4 ил., 1 табл.

 

Изобретение относится к биологии и медицине, а именно к генной инженерии. Данная система может быть использована в фундаментальных исследованиях клеточной биологии, а также при моделировании генетических заболеваний человека на клеточных системах.

Основным методом бесшовного внесения интересующей ДНК-последовательности в клеточный геном является метод направленной гомологичной рекомбинации [Capecchi М.R. Altering the genome by homologous recombination. // Science. 1989. T. 244. №4910. C. 1288-92]. В данном методе используются донорные конструкции, содержащие выбранную для вставки ДНК последовательность между плечами гомологии - последовательностями, которые идентичны участкам, фланкирующим участок генома, в который будет проводиться вставка. Такая методика позволяет проводить очень точные модификации, но с низкой частотой: успешное встраивание последовательности в геном происходит в одной из 105-107 клеток [Capecchi Μ.R. Altering the genome by homologous recombination. // Science. 1989. T. 244. №4910. C. 1288-92]. Внесение двунитевого разрыва в выбранный для редактирования участок генома увеличивает эффективность вставки конструкции с плечами гомологии на несколько порядков [Bibikova Μ., Carroll D., Segal D.J., Trautman J.K., Smith J., Kim Y.-G., Chandrasegaran S. Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases // Mol. Cell. Biol. 2001. T. 21. №1. C. 289-297.; Plessis Α., Perrin Α., Haber J.E., Dujon B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus // Genetics. 1992. T. 130. №3. C. 451-460.; Rouet P., Smih F., Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. // Mol. Cell. Biol. 1994. T. 14. №12. C. 8096-106.; Rudin N., Sugarman E., Haber J.E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. // Genetics. 1989. T. 122. №3. C. 519-34].

В связи с этим было разработано множество специфичных ДНК-связывающих белков для внесения двунитевых разрывов в геном. Из них доминирующую роль на данный момент занимает система CRISPR-Cas9, специфичность которой задается короткой последовательностью гидовой РНК (sgRNA) [Cho S.W., Kim S., Kim J.M., Kim J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease // Nat. Biotechnol. 2013. T. 31. №3. C. 230-232.; Cong L., Ran F.Α., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.Α., Zhang F. Multiplex Genome Engineering Using CRISPR/Cas Systems // Science. 2013. T. 339. №6121. C. 819.; Jinek M., East Α., Cheng Α., Lin S., Ma E., Doudna J. RNA-programmed genome editing in human cells // Elife. 2013. T. 2. С.e00471].

Репарация внесенного эндонуклеазой двунитевого разрыва ДНК может проходить несколькими путями. Среди них путь гомологичной репарации может привести к встраиванию интересующей последовательности ДНК в геном, так как в этом пути в качестве матрицы может использоваться внесенная в клетку донорная ДНК.

Одним из способов повышения эффективности вставки интересующей последовательности в геном является увеличение вероятности прохождения репарации двуцепочечного разрыва по пути гомологичной репарации. Для этого можно использовать искусственные системы, привлекающие к области ДНК разрыва белки, благоприятствующие гомологичной репарации.

Среди белков, принимающих участие на ранних этапах гомологичной репарации, особый интерес вызывает CtIP белок, который связывает концевые участки ДНК и активирует резекцию 5' концов, взаимодействуя с MRN комплексом и Exol/Dna2 нуклеазами [Yeh С.D., Richardson С.D., Corn J.E. Advances in genome editing through control of DNA repair pathways // Nat. Cell Biol. 2019. T. 21. №12. C. 1468-1478].

Было показано, что использование spCas9 белка, связанного через короткий линкер с эффекторным CtIP белком, может повышать эффективность встраивания интересующей последовательности в два раза [Charpentier Μ., Khedher Α.Η.Υ., Menoret S., Brion Α., Lamribet Κ., Dardillac Ε., Boix С, Perrouault L., Tesson L., Geny S., Cian A. De, Itier J. M., Anegon I., Lopez В., Giovannangeli C., Concordet J. P. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair // Nat. Commun. 2018. T. 9. №1. C. 1-11]. Однако повышение эффективности в такой системе значительно зависит от выбранного для редактирования участка ДНК и может полностью пропадать для некоторых вариантов sgRNA [Charpentier Μ., Khedher Α.Η.Υ., Menoret S., Brion Α., Lamribet K., Dardillac Ε., Boix С, Perrouault L., Tesson L., Geny S., Cian A. De, Itier J.M., Anegon I., Lopez В., Giovannangeli C., Concordet J.P. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair // Nat. Commun. 2018. T. 9. №1. С.1-11]. Разработка новой, более стабильной и эффективной системы позволяет расширить возможности применения геномного редактирования.

На момент подачи заявки из открытых источников было известно о следующих наиболее близких аналогах.

Известна система редактирования генома, использующая сшивку CtIP белка через короткий линкер с Cas9 белком (WO 2018162702, А1). Однако она показала ограниченную эффективность на клетках млекопитающих, что может объясняться конформационными ограничениями, которые накладывает прямая сшивка белков.

В качестве прототипа нами выбрана система, предполагающая привлечение эффекторных белков репарации с помощью MS2 системы адаптеров [Tran N.-T., Bashir S., Li X., Rossius J., Chu V.Т., Rajewsky K., R. Enhancement of Precise Gene Editing by the Association of Cas9 With Homologous Recombination Factors // Front. Genet. 2019. T. 10. C. 2-5].

Использование MS2 адаптеров для привлечения белков увеличивает эффективность вставки интересующей последовательности, однако ограничивает применение этой системы клеточными линиями, в которых не используются широко применяемые MS2 адаптеры.

Проблемой, на решение которой направлено данное изобретение, является расширение арсенала средств для увеличения эффективности вставки целевых конструкций в геном человека.

Технический результат заключается в расширении арсенала средств для увеличения эффективности вставки целевых конструкций в геном человека.

Сущность изобретения заключается в следующем.

Предложен рибонуклеопротеиновый комплекс для редактирования генома человека, исключая клетки зародышевой линии человека, путем вставки в него интересующей последовательности, включающий белок spCas9, связанный с sgRNA-PP7, кодируемой последовательностью SEQ ID NO: 1, которая связана с эффекторным химерным белком, кодируемым последовательностью SEQ ID NO: 2.

Разработанный рибонуклеопротеиновый комплекс может быть доставлен в клетку с помощью трансфекции или электропорации в виде двух векторов.

В нашей работе последовательность химерного эффекторного белка (SEQ ID NO: 2) была получена за счет сшивки последовательности белка РСР - белка адаптерной системы, полученной из бактериофага РР7 (123 а.о.), через линкер с NLS последовательностью для локализации белка в ядре (34 а.о.), с последовательностью гена человеческого CtIP белка (897 а.о.). Для облегчения считывания успешной экспрессии химерного эффекторного белка к его концу через Р2А-Т2А разрезающиеся последовательности был добавлен репортерный красный флуоресцентный белок mRuby. Эта конструкция была клонирована в pCS2+ вектор по сайтам рестрикции BamHI/XbaI. Карта вектора, несущего последовательность химерного эффекторного белка, представлена на фиг.1.

Конструкция, несущая sgRNA-PP7 последовательность (SEQ ID NO: 1), которая была получена внесением двух РР7 шпилек в последовательность sgRNA, под U6 промотором, была клонирована в lentiCRISPR v2 вектор по сайтам рестрикции KpnI/NheI. Карта бицистронного вектора, несущего последовательность spCas9 белка и последовательность sgRNA-PP7 представлена на фиг.2.

Для изменения места вставки интересующей последовательности в геном, целевой участок sgRNA из первых 20 нуклеотидов может быть клонирован в вектор по сайтам рестрикции BsmBI. Последовательность целевой части sgRNA может быть получена отжигом двух олигонуклеотидов. При дизайне олигонуклеотидов для отжига следует использовать 20 нуклеотидов непосредственно перед РАМ участком в выбранном для вставки месте в геноме. При отсутствии G нуклеотида в начале целевой последовательности, этот нуклеотид нужно внести перед целевой частью sgRNA для успешной транскрипции с U6 промотора. Для клонирования по BsmBI сайтам к олигонуклеотиду прямой направленности следует добавить САСС последовательность и к олигонуклеотиду обратной направленности -АААС последовательность.

Для успешного проведения вставки в геном требуется донорный вектор, несущий интересующую последовательностью. В качестве донора использовали конструкцию, несущую левое плечо гомологии к AAVS1 локусу (804 п.н.), SA сигнал акцептора сплайсинга, Т2А разрезающуюся последовательность, флуоресцентный зеленый EGFP белок (239 а.о.), сигнал полиаденилирования bGH poly(A) и правое плечо гомологии к AAVS1 локусу (804 п.н.). Эта конструкция была клонирована в pQE30 вектор по сайтам рестрикции XhoI/XbaI. Карта вектора, несущего донорную последовательность EGFP к AAVS1 локусу, представлена на фиг.3.

При изменении места вставки интересующей последовательности в геном плечи гомологии должны быть подобраны так, чтобы совпадать с последовательностями, окружающими место для вставки. При этом рекомендуется выбирать плечи гомологии так, чтобы участок генома, попадающий в область вставки между плечами гомологии, не превышал 100 п.н., в идеале не превышал 10 п.н. Плечи гомологии не должны содержать целевой последовательности sgRNA или не должны содержать РАМ участка после него. При изменении последовательности, выбранной для встраивания в геном, она должна быть помещена в донорный вектор на место EGFP последовательности.

В качестве примера использовали комплекс для проведения вставки EGFP гена в AAVS1 локус клеточной линии HEK293T. В качестве целевой последовательности был выбран TGTCCCTAGTGGCCCCACTG участок AAVS1 локуса. Для проверки эффективности комплекс был использован в сравнении с существующей MS2 системой адаптеров. Векторы, кодирующие комплексы и донорный вектор, несущий последовательность EGFP, были доставлены в клетку методом электропорации. После электропорации клетки проходили отбор пуромицином в течении трех дней. На четвертый день клетки подвергались анализу на проточном цитофлуориметре. Результаты проточной цитофлуориметрии редактируемых клеток представлены на фиг.4 и в таблице.

R2 областью обозначены EGFP/mRuby положительные клетки, которые прошли геномную вставку EGFP последовательности в AAVS1 локус и содержат химерный эффекторный белок. R3 областью обозначены mRuby положительные клетки, которые не прошли геномную вставку и содержат химерный эффекторный белок. Эффективность вставки рассчитывалась как отношение количества клеток в области R2 к общему количеству клеток в областях R2 и R3.

Клетки, успешно получившие компоненты предлагаемой системы, встраивают интересующую последовательность в клеточный геном, что может быть использовано для моделирования наследственных заболеваний.

Отдельно стоит отметить, что увеличенная эффективность встраивания интересующей последовательности в геном позволит с большей легкостью изучать модели полигенетических заболеваний, вызванных изменениями в нескольких генах, среди которых различные формы диабета, рака и болезней сердца.

Настоящее изобретение не предназначено для модификации генетической целостности клеток зародышевой линии человека, не предполагает использование человеческих эмбрионов.

--->

Перечень последовательностей

<110> Федеральное государственное автономное образовательное учреждение

высшего образования «Российский национальный исследовательский

медицинский университет имени Н.И. Пирогова» Министерства здравоохранения

Российской Федерации (Federalnoe gosudarstvennoe autonomnoe obrazovatelnoe

uchrezhdenie vysshego obrazovaniya «Rossijskij natsionalnyj issledovatelskij

meditsinskij universitet imeni N.I. Pirogova» Ministerstva zdravookhraneniya

Rossijskoj Federatsii)

<120> Рибонуклеопротеиновый комплекс для редактирования генома человека

<160> 2

<210> SEQ ID NO: 1

<211> 165

<212> ДНК

<213> Искусственная

<220>

<223> Последовательность, кодирующая sgRNA-PP7

<400> 1

caccggagac gggataccgt ctctgtttta gagctaggcc taaggagttt atatggaaac 60

ccttaggcct agcaagttaa aataaggcta gtccgttatc aacttggcct aaggagttta 120

tatggaaacc cttaggccaa gtggcaccga gtcggtgctt ttttt 165

<210> SEQ ID NO: 2

<211> 3162

<212> ДНК

<213> Искусственная

<220>

<223> Последовательность, кодирующая химерный эффекторный белок

<400> 2

atgggttcca aaaccatcgt tctttcggtc ggcgaggcta ctcgcactct gactgagatc 60

cagtccaccg cagaccgtca gatcttcgaa gagaaggtcg ggcctctggt gggtcggctg 120

cgcctcacgg cttcgctccg tcaaaacgga gccaagaccg cgtatcgcgt caacctaaaa 180

ctggatcagg cggacgtcgt tgattccgga cttccgaaag tgcgctacac tcaggtatgg 240

tcgcacgacg tgacaatcgt tgcgaatagc accgaggcct cgcgcaaatc gttgtacgat 300

ttgaccaagt ccctcgtcgc gacctcgcag gtcgaagatc ttgtcgtcaa ccttgtgccg 360

ctgggccgtc gtctcctggc aagcgctgga ggaggtggaa gcggaggagg aggaagcgga 420

ggaggaggta gcggacctaa gaaaaagagg aaggtggctg ctgctaccgg tatgaacatc 480

tcgggaagca gctgtggaag ccctaactct gcagatacat ctagtgactt taaggacctt 540

tggacaaaac taaaagaatg tcatgataga gaagtacaag gtttacaagt aaaagtaacc 600

aagctaaaac aggaacgaat cttagatgca caaagactag aagaattctt caccaaaaat 660

caacagctga gggaacagca gaaagtcctt catgaaacca ttaaagtttt agaagatcgg 720

ttaagagcag gcttatgtga tcgctgtgca gtaactgaag aacatatgcg gaaaaaacag 780

caagagtttg aaaatatccg gcagcagaat cttaaactta ttacagaact tatgaatgaa 840

aggaatactc tacaggaaga aaataaaaag ctttctgaac aactccagca gaaaattgag 900

aatgatcaac agcatcaagc agctgagctt gaatgtgagg aagacgttat tccagattca 960

ccgataacag ccttctcatt ttctggcgtt aaccggctac gaagaaagga gaacccccat 1020

gtccgataca tagaacaaac acatactaaa ttggagcact ctgtgtgtgc aaatgaaatg 1080

agaaaagttt ccaagtcttc aactcatcca caacataatc ctaatgaaaa tgaaattcta 1140

gtagctgaca cttatgacca aagtcaatct ccaatggcca aagcacatgg aacaagcagc 1200

tatacccctg ataagtcatc ttttaattta gctacagttg ttgctgaaac acttggactt 1260

ggtgttcaag aagaatctga aactcaaggt cccatgagcc cccttggtga tgagctctac 1320

cactgtctgg aaggaaatca caagaaacag ccttttgagg aatctacaag aaatactgaa 1380

gatagtttaa gattttcaga ttctacttca aagactcctc ctcaagaaga attacctact 1440

cgagtgtcat ctcctgtatt tggagctacc tctagtatca aaagtggttt agatttgaat 1500

acaagtttgt ccccttctct tttacagcct gggaaaaaaa aacatctgaa aacactccct 1560

tttagcaaca cttgtatatc tagattagaa aaaactagat caaaatctga agatagtgcc 1620

cttttcacac atcacagtct tgggtctgaa gtgaacaaga tcattatcca gtcatctaat 1680

aaacagatac ttataaataa aaatataagt gaatccctag gtgaacagaa taggactgag 1740

tacggtaaag attctaacac tgataaacat ttggagcccc tgaaatcatt gggaggccga 1800

acatccaaaa ggaagaaaac tgaggaagaa agtgaacatg aagtaagctg cccccaagct 1860

tcttttgata aagaaaatgc tttccctttt ccaatggata atcagttttc catgaatgga 1920

gactgtgtga tggataaacc tctggatctg tctgatcgat tttcagctat tcagcgtcaa 1980

gagaaaagcc aaggaagtga gacttctaaa aacaaattta ggcaagtgac tctttatgag 2040

gctttgaaga ccattccaaa gggcttttcc tcaagccgta aggcctcaga tggcaactgc 2100

acgttgccca aagattcccc aggggagccc tgttcacagg aatgcatcat ccttcagccc 2160

ttgaataaat gctctccaga caataaacca tcattacaaa taaaagaaga aaatgctgtc 2220

tttaaaattc ctctacgtcc acgtgaaagt ttggagactg agaatgtttt agatgacata 2280

aagagtgctg gttctcatga gccaataaaa atacaaacca ggtcagacca tggaggatgt 2340

gaacttgcat cagttcttca gttaaatcca tgtagaactg gtaaaataaa gtctctacaa 2400

aacaaccaag atgtatcctt tgaaaatatc cagtggagta tagatccggg agcagacctt 2460

tctcagtata aaatggatgt tactgtaata gatacaaagg atggcagtca gtcaaaatta 2520

ggaggagaga cagtggacat ggactgtaca ttggttagtg aaaccgttct cttaaaaatg 2580

aagaagcaag agcagaaggg agaaaaaagt tcaaatgaag aaagaaaaat gaatgatagc 2640

ttggaagata tgtttgatcg gacaacacat gaagagtatg aatcctgttt ggcagacagt 2700

ttctcccaag cagcagatga agaggaggaa ttgtctactg ccacaaagaa actacacact 2760

catggtgata aacaagacaa agtcaagcag aaagcgtttg tggagccgta ttttaaaggt 2820

gatgaaagag agactagctt gcaaaatttt cctcatattg aggtggttcg gaaaaaagag 2880

gagagaagaa aactgcttgg gcacacgtgt aaggaatgtg aaatttatta tgcagatatg 2940

ccagcagaag aaagagaaaa gaaattggct tcctgctcaa gacaccgatt ccgctacatt 3000

ccacccaaca caccagagaa tttttgggaa gttggttttc cttccactca gacttgtatg 3060

gaaagaggtt atattaagga agatcttgat ccttgtcctc gtccaaaaag acgtcagcct 3120

tacaacgcaa tattttctcc aaaaggcaag gagcagaaga ca 3162

<---

Рибонуклеопротеиновый комплекс для редактирования генома человека, исключая клетки зародышевой линии человека, путем вставки в него интересующей последовательности, включающий белок spCas9, связанный с sgRNA-PP7, кодируемой последовательностью SEQ ID NO: 1, которая связана с эффекторным химерным белком, кодируемым последовательностью SEQ ID NO: 2.



 

Похожие патенты:

Изобретение относится к биотехнологии. Описан нуклеиновокислотный вектор для получения дефектной по репликации частицы ретровирусного вектора, содержащий ориджин репликации животных, не являющихся млекопитающими, и способный сохранять по меньшей мере 25 тысяч пар оснований (т.п.о.) ДНК, где вектор выбран из: бактериальной искусственной хромосомы; дрожжевой искусственной хромосомы; искусственной хромосомы, происходящей от P1; фосмиды; или космиды, отличающийся тем, что указанный нуклеиновокислотный вектор содержит последовательности нуклеиновой кислоты ретровируса, кодирующие: белки gag и pol и белок env, где каждая последовательность нуклеиновой кислоты ретровируса имеет собственный промотор в нуклеиновокислотном векторе.

Изобретение относится к области биотехнологии, в частности к эпигеномному репрессору транскрипции гена или генов в клетках человека, исключая клетки зародышевой линии человека, представляющему собой белок dCas9, соединенный линкером с белком DNMT3a-L, который соединен линкером с репрессорным доменом KRAB, который соединен линкером с белком МеСР2.

Изобретение относится к области биотехнологии. Описана группа изобретений, включающая РНК-репликон для экспрессии белка, систему транс-репликации для экспрессии белка, включающую вышеуказанный РНК-репликон, ДНК для использования в качестве матрицы для транскрипции in vivo или in vitro, способ получения представляющего интерес белка в клетке (варианты), клетку-хозяин для получения белка, способ получения представляющего интерес белка у субъекта (варианты).

Изобретение относится к области биотехнологии, в частности к способу модулирования экспрессии двух или более целевых генов в эукариотической клетке, предусматривающему использование ортогональных РНК-направляемых не обладающих нуклеазной активностью ДНК-связывающих белков CRISPR-системы Типа II, которые связываются с двумя или более целевыми генами и направляются двумя или более направляющими РНК.

Изобретение относится к области биотехнологии, конкретно к рекомбинантному фолликулостимулирующему гормону (ФСГ, FSH), и может быть использовано в ветеринарии для синхронизации эструса и суперовуляции у животного.

Изобретение относится к области биотехнологии, конкретно к химерным белкам для индукции апоптоза клетки, и может быть использовано в клеточной терапии. Предложен химерный белок, который характеризуется определенной формулой и содержит первый домен гетеродимеризации, второй домен гетеродимеризации и домен каспазы, причем в присутствии химического индуктора димеризации (CID) пара идентичных химерных белков взаимодействует так, что первый домен гетеродимеризации одного химерного белка гетеродимеризуется со вторым доменом гетеродимеризации другого химерного белка, обуславливая гомодимеризацию и активацию двух доменов каспазы.

Изобретение относится к области биохимии, в частности к способу получения антигенсвязывающих белков против представляющего интерес чужеродного антигена, предусматривающему получение генетически модифицированной крысы или мыши, у которой локус-мишень содержит биаллельную делецию всего или части гена, кодирующего аутоантиген.

Изобретение относится к области биохимии, в частности к способу получения антигенсвязывающих белков против представляющего интерес чужеродного антигена, предусматривающему получение генетически модифицированной крысы или мыши, у которой локус-мишень содержит биаллельную делецию всего или части гена, кодирующего аутоантиген.

Изобретение относится к биотехнологии. Описана молекула рекомбинантной нуклеиновой кислоты для экспрессии первого и второго трансгена, содержащая двунаправленный промотор (промотор hCMV-rhCMV), функционально связанный с первым трансгеном в одном направлении и со вторым трансгеном в противоположном направлении, где промотор hCMV-rhCMV содержит: (i) энхансер, фланкированный (ii) основным немедленно-ранним промотором цитомегаловируса человека (промотором hCMV) на одной стороне энхансера и (iii) основным немедленно-ранним промотором цитомегаловируса макака-резуса (промотором rhCMV) на другой стороне энхансера, где (iv) первый трансген расположен ниже промотора hCMV, и (v) второй трансген расположен ниже промотора rhCMV.

Изобретение относится к области биохимии, в частности к грызуну для продуцирования вариабельного домена тяжелой цепи человека, к полученной из него клетке, а также к применению указанного грызуна для получения последовательности нуклеиновой кислоты, кодирующей вариабельный домен тяжелой цепи человека, и к применению указанного грызуна для получения антитела человека.

Изобретение относится к биотехнологии. Описан нуклеиновокислотный вектор для получения дефектной по репликации частицы ретровирусного вектора, содержащий ориджин репликации животных, не являющихся млекопитающими, и способный сохранять по меньшей мере 25 тысяч пар оснований (т.п.о.) ДНК, где вектор выбран из: бактериальной искусственной хромосомы; дрожжевой искусственной хромосомы; искусственной хромосомы, происходящей от P1; фосмиды; или космиды, отличающийся тем, что указанный нуклеиновокислотный вектор содержит последовательности нуклеиновой кислоты ретровируса, кодирующие: белки gag и pol и белок env, где каждая последовательность нуклеиновой кислоты ретровируса имеет собственный промотор в нуклеиновокислотном векторе.
Наверх