Устройство для нагнетания в грунт многокомпонентного закрепляющего состава

 

Союз Советских

Социалистических

Республик

ОП ИСАНИЕ

ИЗОБРЕТЕН ИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ (11), 525776 (61) Дополнительное к авт. свид-ву— (22) Заявлено18 12 72 (21) 18575OR/33 с присоединением заявки М (23) Приоритет (43) Опубликовано25.OR. 76.Бюллетень № 31 (45) Дата опубликования описания 09.12.76

2 (51) M. Кл.

Е O2D 3/1:-

Государственный комитет

Соввтв Министров СССР по делом иеооретений и открытий (53) УДК624. 138. . 34 (088,8 ) (72) Авторы В, Ф, Демин, Ю, Д. Попов, В. С. Сулимов, О. П, Жебенев, изобРетениЯ А. В. Попов, В. С. Шевцов, М. Н. Ибр имов и А. С. Бговаров

Всесоюзный ордена Трудового Красного Знамени (71 Заявитель (71) 3 научно-исследовательский институт гидротехники им. Б, В. Веденеева (54) УСТРОЙСТВО БИ НАГНЕТАНИЯ В ГРУНТ

МНОГОКОМПОН1..НТНОГО ЗАКРЕ ПЛЯ Ю11ЕЕ ГО СОСТАВЛ

Изобретение относится к строительству, в частности, к технике упрочнения грунтов, создания противофильтрационыых завес и т.п., но может быть применено и в других отраслях народного хозяйства, где требуе тся осуществлять автоматическое дозирование компонентов.

Известное устройство для автоматического дозирования компонентов Е1) основано на использовании значений расхода одного 1О из компонентов, измеряемых расходомером, для поддержания заданного соотношения расходов и содержит в числе составных функциональных блоков регулятор расхода.

Однако в этом устройстве может произ- д водитьсядозирование лишь инертных по отношению друг к другу вешеств, Известна также инъекционная установка для двухкомпонентных составов с автоматическим дозированием компонентов (27. о

Это устройство содержит блоки регулирования расхода, установленные ыа соединительных трубопроводах между емкостями компонентов и смесителем, pGcx0j1GMEð, блок анализа и управления, входы которого под- М ключены к выходам расходомеров, а выходы - ко входам блоков регулирования рао хода.

Недостаток,такого устройства заключется в том, что в нем может производить í дозирование лишь сушественно отпичакм шихся по удельному весу вешеств.

Пель изобретения — обеспечение возмощ ности дозирования компонентов с любым соотношением их плотностей.

Это достигается тем, что в устройство введены дополнительные расходомеры, уста» новленные на всех соедтпп тельных трубопроводах, один из которых выполнен нерегулиру-емым по расходу, I la чертеже представлена функционале ная схема предложенного устройства для случая дозировакия двухкомпонентной сме си.

B состав устройства входят емкости компонентов 1, 2 (пневмо блоки, находяшиеся под одинаковым давлением), смеситель 3, соединительные трубопроводы 4 и 5, рас кодомеры 6 и 7 (предпочтительно электричесKGI 0 типа), блок 8 анализа и управ525776

Составитель ll. Морозов

Редак соР А. МоРозова ТехРед Г, Ролик Корректор В. Микита

За каз 5224/46 1 Тираж 830 Подписное

П 1ИПИ Государственного комитета Совета Министров СССР

ШАТИИ . по делам изобретений и открытий

113035, Москва, Ж-35, Гаушская наб., д. 4/5

Филиал ППП Патент, г. Ужгород, ул. Проектная, 4. слп я с,: образователями сигналов расходоме", —.= . узлом сравнения, усилителями и т.д.,:. лок 9 регулирования расхода с дроссельной задвижкой 10 и ее приводом

1 l. Трубопроводы снабжены разделительными ..;-:рабочими задвижками 12. 11ля автоматической промывки системы трубопроводоь служит электронасос 13. К блоку анализа и управления подключены блок 14 счетчиков расходов компонентов и сигнализатор 15. Устройство работает следуашим обр-. loM.

Компоненты закрепляющего с:.с тупают из емкостей 1 2 в скк .:.нтель 3 по

35 трубопроводам 4 и 5. При этом сиги;-ль::зт расходомеров 6 и 7 подаются в блок >;аализа и у..рлвления, где осуществляется Вх равнение. Р,сход одного из кокщонентов, на трубопроводе которого отсутствует блок регулирования расхода, является эталонным. Выходные сигналы блока 8 анализа и управле-ния, отображающие результаты сравнения, подводятся к приводу 11 дроссельной задвижки 10, установле,:.ной на трубопроводе другого неэталонного компон ;. чта. Открытие дроссельной задвижки 10 регул;р,. уетс=. в: —..:::-ветствии с заданным соо,"пошение,, дв х.";. ."понентов. ф

Промывка системы трубопроводов устройства производится в том случае, когда при наличии рабочего давления в пневмобаках показания расходомеров равны нулю.

Формула изобретения

Устройство для нагнетания в грунт многокомпонентного закрепляющего состава, содержащее блоки регулирования расхода, установленные на соединительных трубопроводах между емкостями компонентов и смесителем, расходомер, блок анализа и управления, входы которого подключены к выходам расходомеров, а выходы — ко входам блоков регулирования расхода, о т и и ч а g— щ е е с я тем, что, с целью обеспечения возможности дозирования компонентов с любым соотношением их плотностей на всех соединительных трубопроводах, установлены дополнительные расходомеры, один из котс рых выполнен нерегулируемым по расходу.

Источники информации, принятые во внимание при экспертизе изобретения:

1. Авторское свидетельство № 121901, M. Кл. F 23N 3/00, 1958 г.

2. Авторское свидетельство ¹ 20569З, M.Êë F. О2Р3/12, 1965 г.

Устройство для нагнетания в грунт многокомпонентного закрепляющего состава Устройство для нагнетания в грунт многокомпонентного закрепляющего состава 

 

Похожие патенты:

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле с концентратором, содержащем прозрачные фокусирующие призмы с треугольным поперечным сечением, с углом входа лучей β0 и углом полного внутреннего отражения α = arcsin 1 n , где n - коэффициент преломления призмы, имеющей грань входа и грань переотражения излучения, образующие общий двугранный угол φ, грань выхода концентрированного излучения с приемником излучения и устройство отражения в виде зеркального отражателя, образующего с гранью переотражения острый двугранный угол ψ, который расположен однонаправленно с острым двугранным углом φ фокусирующей призмы. Концентратор выполнен из двух симметричных прозрачных фокусирующих призм, имеющих общую линию касания граней входа и выхода, ориентированную в направлении Север-Юг. Устройство отражения состоит из набора установленных на некотором расстоянии друг от друга зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, с устройством поворота относительно грани переотражения, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ и выполнены в виде жалюзи с устройством поворота относительно поверхности грани входа, угол наклона дополнительных зеркальных отражателей к поверхности грани входа расположен разнонаправленно с острым двугранным углом φ фокусирующей призмы, оси устройства поворота дополнительного зеркального отражателя на грани входа и оси устройства поворота зеркального отражателя на устройстве переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, а углы φ, ψ, δ, β0 и α связаны собой определенными соотношениями. Способ изготовления солнечного модуля с концентратором производят путем изготовления фокусирующей призмы из оптически прозрачного материала, установки приемника излучения, устройства переотражения излучения с зеркальными отражателями и дополнительными зеркальными отражателями на рабочей поверхности с устройствами поворота. Согласно изобретению из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости двух фокусирующих призм с острым двугранным углом при вершине 2-15°, устанавливают фокусирующие призмы таким образом, чтобы грани входа и выхода каждой призмы при вершине имели общую линию касания, ориентированную в направлении Север-Юг, и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и проводят сборку дополнительных зеркальных отражателей с устройствами поворота на рабочей поверхности фокусирующей призмы и устройства поворота для устройства переотражения излучения. Изобретение должно обеспечить повышение оптического КПД за счет снижения потерь излучения в модуле и повышение коэффициента концентрации солнечного излучения. 2 н. и 6 з.п. ф-лы, 1 ил.

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоидов. Солнечный модуль с параболоторическим концентратором с двигателем Стирлинга содержит цилиндрический фотоприемник двигателя Стирлинга, установленный в фокальной области с цилиндрическим устройством охлаждения, расположенным ниже параболоторического концентратора, согласно изобретению, концентратор выполнен составным в виде тела вращения с зеркальной внутренней поверхностью отражения, состоящей из трех зон a-b, b-c, c-d, причем форма отражающей поверхности концентратора X(У) определена системой уравнений, соответствующей условию освещенности различных частей поверхности фотоприемника в виде цилиндра длиной H и радиусом ro, а значения координат X, У в зоне рабочего профиля концентратора a-b определяются выражением: ( X + r o ) 2 = 4 f 2 ∗ ( Y + Δ Y ) , в котором Δ У = X b 2 4 f 1 − ( X b − r 0 ) 2 4 f 2 , где фокусное расстояние f2 рассчитывается по формуле: f 2 = ( H 1 − Y b − h 0 2 ) ( 1 ± 1 sin ζ ) , при этом угол ζ в зоне рабочего профиля концентратора a-b между поверхностью цилиндра и отраженным от поверхности в точке координат Xb, Уb или падающим на поверхность параболоторического концентратора лучом, приходящим в фокальную область цилиндрического фотоприемника двигателя Стирлинга на уровне H1-h0/2, расположенной на радиусе ro, рассчитывается по формуле: t g ζ = H 1 − Y b − h 0 / 2 X b − r 0 , где фокусное расстояние f1 рассчитывается по формуле: f 1 = m R t g β + H 1 − r 0 t g β 1 + 2 t g β значения коэффициента m - изменяющегося в пределах от 0 до 1, высоты H1 между координатной осью ОХ и торцевой поверхностью цилиндрического фотоприемника двигателя Стирлинга, радиуса миделя концентратора R, угла β между отраженным от поверхности в точке координат ХC, УС параболоторического концентратора лучом, приходящим на уровне h0 в фокальную область, расположенную на радиусе r0 цилиндрического фотоприемника двигателя Стирлинга, и перпендикуляром к падающему лучу, выбираются в соответствии с граничными условиями, причем значения координат X, У в зоне рабочего профиля концентратора b-с, в пределах значений угла α+β определяет в соответствии с выражением: X ​ = 2 f 1 [ 1 cos ( α + β ) − t g ( α + β ) ] , где α - угол в зоне рабочего профиля концентратора b-с между перпендикуляром к падающему лучу и отраженным от поверхности в точке координат X, У параболоторического концентратора лучом, приходящим на уровне h, изменяющимся в пределах от 0 до ho, в фокальную область, расположенную на радиусе ro цилиндрического фотоприемника двигателя Стирлинга и определяется формулой: t g α = H 1 − Y − ( h 0 − h ) X , γ - угол в зоне рабочего профиля концентратора c-d между отраженным от поверхности в точке координат Xd, Уd параболоторического концентратора лучом, приходящим в центр торцевой части фокальной области цилиндрического фотоприемника, и уровнем высоты H цилиндрического фотоприемника двигателя Стирлинга, определяется из соотношения: t g ( γ − β ) = Y − f 1 X = r 1 + r 0 H 1 + f 1 , при этом значения координат X, У в зоне рабочего профиля концентратора с-d определяются в соответствии с формулой: X2=4f1*Y, геометрическая концентрация освещенности фотоэлектрического приемника K определяется выражением: K=(X-r1)2/ro(ro+2ho), где ro - радиус цилиндра, r1 - расстояние между осью симметрии 0, У цилиндра и фокусным расстоянием f1, ho - размер фокальной области на боковой поверхности цилиндрического фотоприемника. В результате использования изобретения на эффективной поверхности фотоэлектрического приемника формируется освещенность концентрированного излучения. 4 ил.

Изобретение относится к устройствам преобразования солнечной энергии в электрическую, в частности к конструкциям солнечных энергетических установок, которые могут использоваться в быту, например, в усадьбах индивидуальных жилых домов (коттеджей, сельских жилых домов), на садовых участках, в парках, городских скверах, остановках транспорта (особенно загородом, где нет централизованного электроснабжения) и т.д. Солнечная фотоэлектрическая станция состоит из опорной конструкции с подвесными качелями и гибким каркасом для установки тента над качелями с устройством для регулирования угла наклона каркаса к горизонту, при этом в качестве тента использована изогнутая солнечная батарея, приближающая по форме к фрагменту цилиндрической поверхности, которая состоит, по крайней мере, из одного одностороннего фотоэлектрического модуля, обращенного выпуклой поверхностью к солнцу, при этом на вогнутой поверхности установлены светодиоды и она покрыта светоотражающим материалом. В результате использования изобретения уменьшается материалоемкость солнечной фотоэлектрической станции, так как не требуется отдельной конструкции для размещения солнечной батареи и светодиодного светильника, а также расширяются функциональные возможности совместного использования фотоэлектрических модулей и светодиодного светильника. 4 з.п.ф-лы, 5 ил.

Изобретение относится к возобновляемым источникам энергии и, в частности, к устройству для производства электроэнергии из возобновляемого источника энергии, включающего шарнирное сочленение, имеющее подшипник. Энергогенерирующее устройство для вырабатывания электроэнергии из возобновляемых источников энергии включает основание, устройство преобразования энергии, соединенное с основанием, и шарнирное сочленение между основанием и устройством преобразования энергии, включающее подшипниковый элемент, имеющий корпус, включающий композитный материал, имеющий жесткий материал и снижающий трение материал, покрывающий жесткий материал, при этом жесткий материал содержит материал, выбранный из группы, состоящей из алюминия и нержавеющей стали, а также промежуточный материал, расположенный между жестким материалом и снижающим трение материалом, при этом промежуточный материал содержит по меньшей мере один функциональный термопластичный полимер, имеющий функциональные группы с такими формулами , , , -COOH и/или -COOR, где радикалы R являются циклическими или линейными органическими радикалами, имеющими от 1 до 20 атомов углерода, и включает сополимер этилен-тетрафторэтилена (ETFE), перфтороалкоксиэтилен (PFA), сополимер тетрафторэтиленаперфтора /метилвиниловый эфир (MFA) и их комбинации. По второму варианту энергогенерирующее устройство дополнительно содержит вкладыш, по третьему варианту подшипниковый элемент, присоединенный к шарнирному сочленению, имеет корпус, включающий композитный материал, содержащий жесткий материал и снижающий трение материал, покрывающий жесткий материал, при этом подшипниковый элемент имеет степень атмосферного износа не более чем приблизительно 0,99 микрон/ч в течение по меньшей мере приблизительно 15000 циклов движения шарнирного сочленения, по четвертому варианту снижающий трение материал практически не имеет видимых дефектов после испытания на стойкость к солевому туману в течение по меньшей мере 150 часов в соответствии со стандартным коррозионным испытанием ISO 9227:2006, по пятому варианту композитный материал подшипникового элемента имеет среднюю силу трения не более чем приблизительно 300 Н в течение по меньшей мере 15000 циклов в вибрационном испытании. Изобретение должно повысить надежность и долговечность подшипникового элемента. 5 н. и 8 з.п. ф-лы, 2 табл., 14 ил.

Изобретение относится к регулирующей/контрольной аппаратуре автоматического отслеживания солнечной энергии системы генерирования солнечной энергии. Заявленная регулирующая/контрольная аппаратура содержит опорный узел, опорное седло, расположенное на одном конце опорного узла; несущую платформу, закрепленную на опорном седле посредством шарнирного узла вращения с возможностью поворота в двух направлениях, по меньшей мере, один модуль генерирования солнечной энергии, расположенный на несущей платформе для преобразования солнечной энергии в электрическую энергию. По меньшей мере, один узел привода расположен между опорным узлом и несущей платформой и служит для привода несущей платформы в соответствии с заданными параметрами, хранящимися в блоке управления. Сама несущая платформа установлена с возможностью наклона в различных направлениях и на различные углы наклона относительно шарнирного узла вращения. Имеется также детектирующий/корректирующий модуль, расположенный на несущей платформе для детектирования и получения актуальных параметров, включающих в себя направление наклона и угол наклона несущей платформы, и передачи актуальных параметров в блок управления. При этом блок управления сравнивает актуальные параметры с заданными, хранимыми в нем параметрами для получения сравнительного результата, и в соответствии со сравнительным результатом блок управления модифицирует направление наклона и угол наклона несущей платформы посредством узла привода. Изобретение должно обеспечить автоматическое отслеживание солнечной энергии в системе генерирования. 20 з.п. ф-лы, 8 ил.

Система автономного электро- и теплоснабжения жилых и производственных помещений. Источником электроэнергии является фотоэлектрическая батарея (16), бесперебойность питания обеспечивается аккумуляторной батареей (21) и ветрогенераторной установкой (17), заряд батареи (21) от них происходит через коммутатор (20); источниками тепла являются блок солнечных коллекторов (10) и ветрогенераторная установка (17), соединенная с электронагревателем (19) в тепловом аккумуляторе (3), нагреваемый в коллекторе (10) воздушный поток передает теплоту через контур (12) в помещение и/или в теплообменник (13) в аккумуляторе (3) с водой, подача тепла в отопительные приборы помещения регулируется вентилями (34) и (35), насосом (25) и тепловым насосом (1), который поддерживает температуру на выходе его конденсатора, а поток теплоносителя регулируется насосом (25) и вентилями (34) и (35), контроль подачи тепла потребителям ведется датчиками температуры. Все датчики тепловой и электрической нагрузок, исполнительные механизмы в тепловых контурах системы и их разобщительная арматура соединены с автоматической системой управления (41), которая обрабатывает сигналы, определяет алгоритм поведения всех элементов и вырабатывает сигналы управления. Технический результат: повышение надежности, увеличение эффективности работы теплового насоса и системы в целом, повышение экономичности. 1 ил.

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоидов. Солнечный теплофотоэлектрический модуль с параболоторическим концентратором, состоящий из параболоидного концентратора типа «Фокон» и теплофотоэлектрического приемника, расположенного в фокальной области с равномерным распределением концентрированного излучения, отличающийся тем, что солнечный теплофотоэлектрический модуль содержит параболоторический концентратор и цилиндрический теплофотоэлектрический приемник с устройством охлаждения, установленный в фокальной области, концентратор, представляющий тело вращения с зеркальной внутренней поверхностью отражения, состоящий из нескольких зон (a-b, b-c, c-d), выполнен составным по принципу собирания отраженных лучей в двух фокальных областях из отдельных зон концентратора: - форма отражающей поверхности зон a-b, b-c концентратора Х(У) определяется системой уравнений, соответствующей условию равномерной освещенности поверхности фотоэлектрической части теплофотоэлектрического приемника, выполненного в виде цилиндра из скоммутированных высоковольтных ФЭП длиной ho и радиусом rо, Yn=Rn 2/4fo, Xn=Rn-(k-1)ro, Rn=2fo(tgαn+cosαn), Δα=αo/N, αn=Δα(n-N/2), X*=2f1Q[(1+1/Q2)l/2-1], Q=B/ro, B=ho+h, Y*=X*2/4f1, Y*n=ΔY*n, Хn=[4f1(Y*+Y*n)]1/2, ΔY=P[1±(1-4R/P2)1/2]/2, P=L+Yb, L=fo+h+ho/2, где αn - угол (в зоне рабочего профиля концентратора а-с) между уровнем ординаты в точке координат Хn, Уn и отраженным от поверхности параболы с фокусным расстоянием fo лучом, приходящим в фокальную область шириной ho, расположенной на радиусе rо цилиндрического фотоэлектрического приемника в интервалах Δα=αo/N, где n выбирается из ряда целых чисел n=1, 2, 3…N, значения параметров fo, f1, k выбираются в соответствии с граничными условиями, а геометрическая концентрация освещенности фотоэлектрического приемника Kn в интервалах радиуса концентратора ΔXn=Xn-Xn-1 равна: Kn=(Rn+1 2-Rn 2)n/do, - форма отражающей поверхности зоны c-d концентратора Х(У) определяется системой уравнений, соответствующей условию равномерной освещенности поверхности тепловой части теплофотоэлектрического приемника, выполненного в виде усеченного конуса с боковой поверхностью длиной d*, верхним радиусом rов и нижним радиусом rв:Хc=2Уc(1/codβв-tgβв), tgβв=(Yс-Нв)(Rc-roв), fв=Yc-Xctgβв, rв=Хc-Rc, d*=h*/sinφo, d*n=d*n/N, Kn=(R2 n+1-R2 n)/(r*n+1+r*n)Δd*, Xвn=2fв(tgγвn+1/cosγвn), tgφo=h*/(ro-r*во), где βв - угол (в зоне рабочего профиля концентратора c-d) между уровнем ординаты в точке координат Хс, Ус и отраженным от поверхности параболы с фокусным расстоянием fв лучом, приходящим в фокальную область усеченного конуса радиусом rв фотоэлектрического приемника, γn - угол (в зоне рабочего профиля концентратора c-d) между уровнем ординаты в точке координат Хn, Уn и отраженным от поверхности параболы с фокусным расстоянием fв лучом, приходящим в фокальную область усеченного конуса шириной d* фотоэлектрического приемника в интервалах Δd*=d*/N, где n выбирается из ряда целых чисел n=1, 2, 3…N, при этом значения параметров fв, k выбираются в соответствии с граничными условиями, φо угол наклона боковой поверхности усеченного конуса фотоэлектрического приемника, а геометрическая концентрация освещенности фотоэлектрического приемника Kn в интервалах радиуса концентратора ΔХn=Хn-Xn-1 равна: Kn=(R=2 n+1-R2 n)/(r*n+1+r*n)Δd*. 5 ил.

Мобильная автономная солнечная электростанция (МАСЭС) предназначена для снабжения электроэнергией боевых позиций и командных пунктов ракетно-артиллерийских подразделений, пограничных застав, блокпостов и других удаленных объектов полевого базирования различного назначения. МАСЭС относится к области возобновляемых источников энергии и, в частности, предназначена для получения электроэнергии от воздействия солнечной радиации на фотоэлектронные модули (ФЭМ). МАСЭС содержит: одноосный прицеп, на котором размещена квадратная в поперечном сечении световодная труба; четырехгранный оптически активный купол; криволинейный отражатель лучей солнечной радиации; вращающийся цилиндр, на образующей которого размещены ФЭМ, полуцилиндрическая сложная собирающая линза; вал цилиндра; подшипники вала цилиндра; микродвигатель; вентилятор; датчик температуры; блок аккумуляторных батарей (БАКБ); контроллер заряда-разряда (КЗР); инвертор. Положительный эффект достигается за счет сбора лучей солнечной радиации независимо от угла солнцестояния четырехгранным оптически активным куполом; дополнительной концентрации лучей криволинейным отражателем на поверхность четырехгранного оптически активного купола; транспортировки лучей солнечной радиации от четырехгранного оптически активного купола по квадратной световодной трубе на полуцилиндрическую сложную собирающую линзу; вращения цилиндра, на образующей поверхности которого размещены ФЭМ, воспринимающие периодическую концентрацию лучей солнечной радиации от полуцилиндрической сложной собирающей линзы. Технический результат: устойчивое получение электроэнергии от солнечной радиации без применения приборов слежения за солнцем, повышение надежности и эффективности выработки электроэнергии. 12 з.п. ф-лы, 6 ил.

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям для получения электричества и тепла. Техническим результатом является повышение эффективности преобразования солнечной энергии, снижение удельных затрат на получение электроэнергии и тепла. В гибридном фотоэлектрическом модуле, содержащем защитное стеклянное покрытие, соединенные солнечные элементы, размещенные между стеклом и корпусом с теплообменником, солнечные элементы электроизолированы от теплообменника, пространство между солнечными элементами и теплообменником, а также между стеклянным покрытием и теплообменником заполнено слоем силоксанового геля толщиной 0,5-5 мм, защитное стеклянное покрытие выполнено в виде вакуумированного стеклопакета из двух стекол с вакуумным зазором 0,1-0,2 мм с вакуумом 10-3-10-5 мм рт.ст. Теплообменник выполнен в виде герметичной камеры с патрубками для циркуляции теплоносителя, а общая площадь соединенных солнечных элементов соизмерима с площадью верхнего основания корпуса теплообменника. В гибридном фотоэлектрическом модуле цепочки из последовательно соединенных солнечных элементов могут быть соединены электрически параллельно при помощи коммутационных шин. 1 з.п. ф-лы, 2 ил.
Наверх