Состав шихты для изготовления керамического материала

 

(19)SU(11)1078827(13)A1(51)  МПК 5    C04B35/58(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯк авторскому свидетельствуСтатус: по данным на 27.12.2012 - прекратил действиеПошлина:

(54) СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО МАТЕРИАЛА

Изобретение относится к составу шихты для изготовления композиционного керамического материала для изготовления поглотителей электромагнитной энергии и может быть применено преимущественно в электронных приборах, специальных измерительных устройствах высокого уровня мощности. Известны керамические материалы, используемые в качестве поглотителей энергии высокой частоты, содержащие оксид алюминия и вольфрам, или оксид алюминия и титанат алюминия, или оксиды алюминия и титана. Поглотители на основе оксида алюминия, титаната алюминия и оксида титана из-за низкой теплопроводности (5 - 7 Вт/(м K) не могут быть использованы в электронных приборах и измерительных устройствах высокого уровня мощности, так как увеличение удельных тепловых нагрузок на поглощающие элементы в подобных приборах приводит к их перегреву. В результате перегрева поглощающих элементов в составе электронных приборов происходит дополнительное газовыделение из них, которое ведет к ухудшению вакуума в приборах. Перегрев поглощающих элементов в составе измерительных устройств, работающих в воздушной среде, приводит к снижению поглощающих свойств поглотителей вследствие окисления поглощающей фазы Ti3O5 до TiO2. Поглотитель на основе оксида алюминия и вольфрама обладает довольно высокой теплопроводностью, сравнимой с теплопроводностью стали. Однако значительная разница в удельных весах металла и окисла существенно затрудняет получение однородного по составу материала, а формирование сложных изделий методом горячего литья под давлением практически невозможно. Из перечисленных поглотителей наиболее широкое применение в отечественных приборах находят поглотители на основе оксидов алюминия и титана, изготовление которых освоено в мелкосерийном производстве. Известен керамический материал для поглотителей электромагнитной энергии, содержащих оксид бериллия и оксид титана и имеющих теплопроводность до 75 Вт (мК). Однако дефицитность исходного сырья для получения оксида бериллия является серьезным препятствием для организации серийного производства поглотителей на его основе, а высокая токсичность оксида бериллия требует дополнительных материальных затрат на организацию безопасных условий труда. Кроме того, поскольку процесс восстановления оксида титана до нестехиометрического окисла Ti3O5, который придает материалу поглощающие свойства, осуществляется в узком интервале температур (1540 - 1560оС), а также существенно зависит от влажности среды и времени выдержки при данной температуре, воспроизводимость поглощающих свойств поглотителей от паpтии к партии затруднена. Состав и технология изготовления поглотителей не предусматривает возможность регулирования степени поглощения. Известен состав шихты для изготовления керамического материала, включающий нитрид алюминия и оксид иттрия, являющийся наиболее близким техническим решением к данному. Материал с содержанием добавки Y2O3 в пределах 1 -2% обладает теплопроводностью при 20оС 80 - 120 Вт/(м К), диэлектрической проницаемостью при частоте 106 Гц 8-8,5 и величиной тангенса угла диэлектрических потерь 0,0001 - 0,0005. Низкие значения диэлектрической проницаемости и потерь не позволяют использовать этот материал по указанному назначению. Целью изобретения является обеспечение возможности использования материала в качестве поглотителя электромагнитной энергии за счет повышения диэлектрической проницаемости и тангенса угла диэлектрических потерь. Цель достигается за счет того, что шихта для изготовления керамического материала, включающая нитрид алюминия и оксид иттрия, дополнительно содержит железо или хром при следующем соотношении компонентов, мас.%: Нитрид алюминия 48 - 68,5 Оксид иттрия 1 - 2 Железо или хром 30 - 50
Для получения поглотителей были приготовлены смеси порошков ингредиентов (см. табл. 1). Из каждой смеси методом прессования и последующего спекания в азотной среде при температуре 1650 - 1750оС с выдержкой при данной температуре в течение 30 - 90 мин были изготовлены образцы для измерения основных свойств поглотителей, которые приведены в табл.2. Проведена сравнительная оценка поглощающих свойств поглотителя на основе оксидов бериллия и титана и заявленного поглотителя после нагрева в окислительной среде. Результаты измерений приведены в табл.3. Из табл.3 видно, что данный материал сохраняет близкий к прототипу высокий уровень теплопроводности, но, в отличие от него, имеет более высокие значения диэлектрической проницаемости и тангенс угла диэлектрических потерь, которые однозначно определяют возможность применения заявленного материала в новом качестве, как поглотителя электромагнитной энергии. Этот вывод подтверждается результатами петрографического анализа, в результате которого установлено наличие в материале дополнительной металлической фазы, обуславливающей повышение диэлектрической проницаемости и тангенса угла диэлектрических потерь материала. В табл. 4 приведены сведения по фазовому составу конечного продукта, полученного на основе заявленного состава шихты.


Формула изобретения

СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО МАТЕРИАЛА, включающий нитрид алюминия и оксид иттрия, отличающийся тем, что, с целью обеспечения возможности использования материала в качестве поглотителя электромагнитной энергии за счет повышения диэлектрической проницаемости и тангенса угла диэлектрических потерь, он дополнительно содержит железо или хром при следующем соотношении компонентов, мас.%:
Нитрид алюминия 48 - 68,5
Оксид иттрия 1 - 2
Железо или хром 30 - 50



 

Похожие патенты:

Изобретение относится к изделиям, режущим инструментам на основе борида группы IV B (титан, графний, цирконий) и способам уплотнения их структуры

Изобретение относится к керамике на основе нитрида кремния, которая особенно полезна для использования в качестве режущего инструмента при высокоскоростной стружкообразующей механической обработке металлических материалов

Изобретение относится к области порошковой металлургии и может быть использовано для изготовления керамических конструкционных деталей, в том числе и крупногабаритных, например, истираемых вставок и монолитных ободов надроторного уплотнения рабочего колеса газотурбинных двигателей, формовой оснастки для отливки термостойких стекол, сепараторов подшипников и т.д

Изобретение относится к области порошковой металлургии и может быть использовано для изготовления керамических конструкционных деталей, в том числе и крупногабаритных, например, истираемых вставок и монолитных ободов надроторного уплотнения рабочего колеса газотурбинных двигателей, формовой оснастки для отливки термостойких стекол, сепараторов подшипников и т.д

Изобретение относится к производству огнеупорной керамики, преимущественно конструкционного назначения и может быть использовано для изготовления многослойных керамических изделий, например, надроторных уплотнений, пресс-форм для формования изделий из термостойкого стекла, бронеплит и т.д

Изобретение относится к получению сверхтвердых материалов в аппаратах высокого давления и температуры
Изобретение относится к области получения сверхтвердых материалов в аппаратах высокого давления и температуры и может быть использовано в машиностроении при изготовлении лезвийного режущего инструмента

Изобретение относится к области получения абразивных материалов на основе борсодержащих соединений, в частности к нитриду бора аморфной структуры

Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих нитрид алюминия, и может найти применение при изготовлении керамических изделий
Наверх