Способ механических испытаний образцов горных пород и устройство для его осуществления

 

Изобретение относится к горному делу и может быть использовано для оценки прочности образцов горных пород слоистых и трещиноватых массивов при расчете параметров устойчивых открытых и подземных горных выработок. Цель изобретения - снижение трудоемкости и повышение достоверности определения прочностных характеристик за счет исключения необходимости ориентирования поверхностей ослабления в образцах при испытании. Изготавливают образцы с естественными или искусственными поверхностями ослабления таким образом, чтобы указанные поверхности были перпендикулярны торцам соответствующих образцов. Размещают каждый образец в матрице 6 так, чтобы поверхность ослабления совпадала с плоскостью низкомодульной прокладки 7, размещенной между частями матрицы. Нагружают образец посредством плунжера 9 через гидромагистраль 13 до значения напряжений, соответствующих напряженному состоянию образца в массиве. Повышают давление в гидромагистрали 14, установив синхронизатором 15 соотношения давлений требуемый угол сдвига , приводят в действие плунжеры 2 и 3. Для каждого образца угол сдвига поддерживают постоянным. В момент разрушения образца фиксируют показания силоизмерителей 16. 2 с и 1 з. п. ф-лы, 3 ил.

Изобретение относится к горному делу, а более конкретно к испытаниям на прочность образцов горных пород, и может быть использовано для оценки прочности слоистых и трещиноватых массивов при расчете параметров устойчивых открытых и подземных выработок.

Известен способ определения прочности образцов горных пород, включающих поверхности ослабления, сущность которого заключается в том, что нагрузку сжатия ориентируют под углами от 45 до 90о к плоскости искусственно созданной поверхности ослабления за счет изменения углов наклона этих поверхностей к рабочим торцам образцов при их изготовлении. При испытаниях на одноосное сжатие поверхности искусственной трещины соединяются либо исключительно за счет сил трения поверхностей без применения какого-либо клейкого вещества, либо за счет сцепления поверхностей искусственной трещины различными адгезивными веществами.

Недостатком этого способа является узкий диапазон изменения углов наклона поверхностей ослабления к направлению сжимающих нагрузок. Второй недостаток - невозможность проведения испытаний с применением напряженных состояний в плоскости трещины от сдвига со сжатием до сдвига с растяжением в идентичных условиях, что связано с необходимостью перехода к различным условиям нагружения. И третьим недостатком является то, что способ предлагает испытание образцов горных пород только с искусственно созданными трещинами.

Известен способ определения прочностных характеристик образцов горных пород по поверхностям ослабления, при осуществлении которого достигается идентичность создания в плоскости поверхности ослабления напряженных состояний, характеризуемых сжатием, сдвигом со сжатием, чистым сдвигом и отрывом. Осуществление способа позволяет также охватить весь возможный диапазон углов ориентации поверхностей ослабления к направлению прикладываемых нагрузок [1] .

Основным недостатком известного способа является высокая трудоемкость по изготовлению групп образцов, в которых естественные или искусственные поверхности ослабления ориентируют под требуемыми углами к рабочим торцам образцов. Кроме того, процесс изготовления образцов для испытаний требует применения специального оборудования. Вторым недостатком является недостаточное соответствие условий лабораторных испытаний условиям напряженных состояний структурных блоков в массиве, что, в свою очередь, отражается на достоверности получаемых результатов.

Наиболее близким к изобретению по конструктивному решению является сдвиговая установка, включающая жесткую стальную раму, нагрузочные плунжеры, действующие во взаимно перпендикулярных направлениях, роликовую опору, сдвиговую матрицу с низкомодульной прокладкой и силоизмерители [2] .

В сдвиговую матрицу, одна из частей которой закреплена на раме, размещают испытываемый образец правильной формы. Через подвижную часть матрицы на образец передают усилия плунжера, одно из которых является нормальным к поверхности среза, другое, действующее в горизонтальном направлении, - сдвиговым. Плунжеры действуют независимо друг от друга - на одном (вертикальном) в процессе испытаний поддерживают постоянное давление, а на другом (горизонтальном) давление возрастает до тех пор, пока не произойдет разрушение образца. Определив площадь поверхности сдвига по результатам отдельных испытаний строят график в координатах нормальные - касательные напряжения, по которому судят о прочностных свойствах образцов горных пород при различных напряженных состояниях.

Независимость действий двух нагружающих плунжеров не позволяет задавать при испытаниях образцов требуемый угол сдвига, что является основным недостатком известного устройства. Второй недостаток устройства - отсутствие нагрузочного устройства, позволяющего создавать в испытываемом образце напряженные состояния, соответствующие напряженным состояниям структурных блоков в массиве.

Эти недостатки связаны с конструктивным исполнением устройства.

Целью изобретения является повышение снижения трудоемкости и повышение достоверности определения прочностных характеристик за счет исключения необходимости различного ориентирования поверхностей ослабления в образцах, а также более полного соответствия условий нагружения образцов напряженному состоянию структурных блоков в массиве.

Это достигается тем, что в известном способе, включающем изготовление образцов правильной формы с контролируемыми поверхностями ослабления, создание в плоскости поверхности ослабления напряженных состояний, характеризуемых сжатием, сдвигом со сжатием и чистым сдвигом в идентичных условиях нагружения, в образцах при их изготовлении плоскость поверхности ослабления ориентируют перпендикулярно торцам и нагружают образец одновременно действующими силами, одна из которых перпендикулярна контролируемой плоскости поверхности ослабления, а другая параллельна ей, которую прикладывают к одной части торца образца, расположенной между следом поверхности ослабления и образующей боковой гранью, при этом в процессе нагружения поддерживают соотношение сил постоянным. Дополнительно к другой торцовой части образца прикладывают одновременно компенсационную силу, действующую параллельно контролируемой поверхности ослабления, чем создают в образце напряженное состояние, соответствующее напряженному состоянию реального массива.

В известном устройстве, включающем жесткую раму, взаимно перпендикулярные нагружающие плунжеры, жесткую опорную плиту, роликовую опору, сдвиговую матрицу с низкомодульной прокладкой и силоизмерители, в жесткую раму встроен дополнительный плунжер, параллельный одному из основных, а между основными плунжерами, соединенными единой гидромагистралью, установлен синхронизатор соотношения давлений, а дополнительный плунжер подключен к независимой гидромагистрали. Синхронизатор соотношения давлений выполнен в виде набора мультиплексоров с гидрораспределителем, а дополнительный плунжер снабжен съемным нагрузочным сегментом.

На фиг. 1 изображено устройство, общий вид; на фиг. 2 - разрез матрицы с размещением в ней образцов с поверхностью ослабления; на фиг. 3 - вид торцовой части матрицы со съемным нагрузочным сегментом со стороны действия одного из основных и дополнительных плунжеров.

Устройство состоит из жесткой рамы 1, в которую вмонтированы нагружающие плунжеры 2, 3, действующие во взаимно перпендикулярном направлении, жесткой опорной плиты 4, в которую опирается один из основных плунжеров 3 и которая через роликовую опору 5 соединяется со сдвиговой матрицей 6.

Сдвиговая матрица состоит из двух частей, соприкасающихся между собой через низкомодульную прокладку 7, и имеет съемный нагрузочный сегмент 8, в который опирается дополнительный плунжер 9, вмонтированный в жесткую раму 1 параллельно одному из основных плунжеров 2. Нижняя часть сдвиговой матрицы 6 крепится к жесткой раме 1 с помощью винтов 10.

В сдвиговой матрице 6 размещен образец 11 правильной формы с поверхностью 12 ослабления. Дополнительный плунжер 9 приводится в действие независимой гидромагистралью 13, а основные 2, 3 - общей гидромагистралью 14, в которой установлен синхронизатор 15 соотношения давлений между основными плунжерами 2, 3. Каждый плунжер снабжен силоизмерителем 16.

Способ механических испытаний образцов горных пород с поверхностями ослабления и работа устройства осуществляются следующим образом.

При изготовлении образцов 11 естественные или искусственные поверхности 12 ослабления ориентируют под углом 90о к торцовым поверхностям и условно разбивают образцы на группы. Затем каждый из образцов 11 размещают в матрице 6 с таким расчетом, чтобы поверхность 12 ослабления совпадала с плоскостью расположения низкомодульной прокладки 7, и нагружают образец через съемный нагрузочный сегмент посредством дополнительного плунжера 9 через гидромагистраль 13 до значения напряжений, соответствующих напряженному состоянию образца в массиве. Нагружение может осуществляться независимо или синхронно с работой основного плунжера 3.

Далее приводят в действие основные плунжеры 2, 3, повышая давление рабочей жидкости в гидромагистрали 14, предварительно установив посредством синхронизатора 15 соотношения давлений заданный угол сдвига. В испытаниях одной группы образцов для каждого из них угол сдвига остается постоянным и изменяется только при переходе от одной группы к другой. В момент разрушения образца 11 фиксируют показания силоизмерителей 16 основных плунжеров 2, 3.

Максимальное разрушающее напряжение вычисляется по формуле: R= (1/Sтр)10-3, МПа, где Р1 - фиксированная максимальная сила основного плунжера 3, кН; Р2 - фиксированная максимальная сила основного плунжера 2, кН; Sтр - площадь поверхности ослабления в образце, измеренная до размещения образца в матрице, м2.

Реализация предлагаемого способа и устройства позволит повысить технологичность проведения испытаний за счет снижения трудоемкости подготовки образцов и повысить достоверность результатов определения прочности образцов пород по поверхностям ослабления при различных углах ориентации этих поверхностей к направлению прикладываемой нагрузки за счет более полного соответствия условий нагружения образцов условиям напряженных состояний структурных блоков в массиве. (56) 1. Авторское свидетельство СССР N 1330506, кл. G 01 N 3/24, 1985.

2. Ki-Joo Kim. Chung-In Lee, Zai-Kuk Kim. The shear strength and deformation behavior of rock with weak planes. Proceedings of the International symposium on engineering in complex rock formations. November, 1986, Beijng. China.

Формула изобретения

1. Способ механических испытаний образцов горных пород, заключающийся в том, что изготавливают образцы правильной формы с поверхностями ослабления, создают в этих плоскостях напряженные состояния, соответствующие одноосному нагружению со сдвигом и чистому сдвигу, путем их нагружения в идентичных условиях двумя нагрузками, одну из которых прикладывают к боковой грани соответствующего образца, а другую - к его торцу между боковой гранью и следом на этом торце поверхности ослабления, и определяют прочностные характеристики горной породы, отличающийся тем, что, с целью снижения трудоемкости и повышения достоверности определения прочностных характеристик за счет исключения необходимости различного ориентирования поверхностей ослабления в образцах, при изготовлении образцов поверхности ослабления ориентируют перпендикулярно их торцам, нагружение каждого образца осуществляют взаимно перпендикулярными нарастающими силами, отношение которых поддерживают постоянным и равным = tg, где P1 - нагрузка, прикладываемая к торцу образца; P2 - нагрузка, прикладываемая к боковой грани образца; - требуемый угол сдвига, а нагрузку к торцу образца прикладывают так, что ее вектор параллелен его поверхности ослабления.

2. Способ по п. 1, отличающийся тем, что при нагружении в каждом образце создают напряженное состояние, соответствующее напряженному состоянию реального массива горной породы, путем приложения к его другому торцу дополнительной нагрузки, параллельной поверхности ослабления.

3. Устройство для механических испытаний образцов горных пород, содержащее жесткую раму, гидромагистраль с двумя нагружающими плунжерами, оси которых взаимно перпендикулярны, разъемную матрицу из двух частей для размещения образца, установленную между частями матрицы низкомодульную прокладку, связанную с одним из нагружающих плунжеров жесткую плиту с опорными роликами, предназначенными для взаимодействия с поверхностью одной из частей матрицы, которая связана с вторым нагружающим плунжером, ось которого параллельна плоскости прокладки, и силоизмерители, отличающееся тем, что, с целью снижения трудоемкости и повышения достоверности определения прочностных характеристик, оно снабжено дополнительными гидромагистралью с нагружающим плунжером, связанным с другой частью матрицы и имеющим ось, параллельную оси второго нагружающего плунжера, и синхронизатором соотношений давлений, связывающим между собой основные нагружающие плунжеры.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к неразрушающему контролю несущей способности строительных конструкций

Изобретение относится к неразрушающему контролю несущей способности строительных конструкций, например балок, ферм, рам

Изобретение относится к неразрушающему контролю качества и физико-механических характеристик материалов и изделий ракетной и авиационной техники и может быть использовано при неразрушающем контроле прочности тонкостенных металлических изделий, например полых тел вращения (труб, цилиндров, конусов, сфер, резервуаров и т.д.), в различных отраслях народного хозяйства

Изобретение относится к неразрушающему контролю качества и физико-механических параметров и изделий ракетной и авиационной техники и может быть использовано при неразрушающем контроле прочности тонкостенных металлических изделий, например полых тел вращения (газо-нефтепроводов, цилиндров, конусов, сфер, резервуаров и т.п.) в различных отраслях народного хозяйства

Изобретение относится к средствам механических испытаний материалов с воспроизведением низкотемпературных режимов

Изобретение относится к устройствам для испытания материалов и может быть использовано для определения их прочности при совместном действии усилий среза и растяжения-сжатия

Изобретение относится к диагностике конструкций и может быть использовано при оценке остаточного ресурса конструкций, в частности, трубопроводов в процессе эксплуатации

Изобретение относится к испытательной технике, а именно к устройствам для испытания трубчатых образцов и цилиндрических оболочек

Изобретение относится к неразрушающим способам контроля качества строительных материалов и может быть использовано для контроля качества сталефибробетона в конструкциях и изделиях

Изобретение относится к измерительной технике и может применяться в машиностроении

Изобретение относится к испытательной технике

Изобретение относится к области машиностроения и может быть использовано при разработке технологии изготовления деталей и инструмента
Изобретение относится к испытательной технике и может быть использовано при определении механических свойств металла изделий, например, из аустенитных и аустенитно-ферритных сталей

Изобретение относится к методам испытания материалов на усталостную прочность, в частности к способам определения предела контактной выносливости материала
Наверх