Лазер с перестраиваемым по частоте излучением

 

Использование: в различных областях науки и техники, где требуется перестраиваемое по частоте спектрально чистое излучение, в том числе в спектральной аппаратуре. Сущность изобретения: лазер включает широкополосную усиливающую среду, резонатор, состоящий из дифракционной решетки, зеркала и призменного расширителя пучка, первая призма которого позволяет вывести из резонатора излучение, пространственно разложенное в спект дифракционной решеткой, а также диафрагмы на пути спектрально чистого излучения, проходящего после диафрагмы через ту же усиливающую среду, что и широкополосное излучение. 1 ил.

Изобретение относится к лазерной технике и может быть использовано в различных областях науки и техники, требующих перестраиваемого по частоте спектрально чистого лазерного излучения, в том числе в спектральных приборах.

Известен лазер (патент ФРГ N 2918863), включающий широкополосную усиливающую среду, резонатор, состоящий из зеркала, дифракционной решетки для перестройки частоты генерации, одновременно используемой как средство для спектральной очистки покидающего резонатора лазерного излучения и призменного расширителя пучка, первая призма которого выполнена с тремя рабочими гранями под такими углами друг к другу, что ее входная грань выводит из резонатора и направляет на дифракционную решетку часть излучения, распространяющегося в резонатор от зеркала через усиливающую среду к расширителю, почти параллельно части указанного излучения, прошедшего через расширитель. Углы падения этих излучений на дифракционную решетку отличаются на 1-2о. Покинувшее резонатор излучение пространственно разлагается дифракционной решеткой на широкополосное спонтанное излучение, задерживаемое диафрагмой, и спектрально чистое лазерное излучение, пропускаемое диафрагмой к усиливающей среде, проходя которую второй раз спектральное чистое излучение усиливается.

Недостатками этого решения является: сложная и не оптимальная с точки зрения выделения спектрально чистого излучения оптическая схема лазера; сложная в изготовлении конструкции первой призмы расширителя пучка, выполненная с тремя рабочими гранями, расположенными под различными заданными углами друг к другу; и увеличенный размер дифракционной решетки и, следовательно, ее вращательный момент, что ограничивает быстродействие перестройки частоты спектрально чистого излучения.

Существуют и другие решения, позволяющие получать спектрально чистое лазерное излучение, например а.с. N 910100А, где для пространственного разделения фона и спектрально чистого излучения используются дифракционная решетка, идентичная дифракционной решетке резонатора и установленная на общем валу с последней. Это решение обладает теми же недостатками, что и описанное выше, но в еще большей степени.

Поэтому в качестве прототипа выбрано решение по п.7 патента ФРГ N ДЕ 2918863 как наиболее близкое по достигаемому эффекту к предлагаемому изобретению.

Целью изобретения является упрощение оптической схемы и конструкции, а также повышение быстродействия перестройки спектрально чистого излучения.

Цель достигается тем, что из резонатора лазера, состоящего из зеркала, дифракционной решетки и призменного расширителя пучка, выводится имеющееся в нем всегда пространственно разложенное дифракционной решеткой излучение с помощью первой призмы расширителя пучка, выполненной с тремя рабочими гранями, две из которых параллельны друг другу. Причем одна из них - входная для излучения, распространяющегося в резонаторе от зеркала через усиливающую среду и расширитель к дифракционной решетке, а другая - выходная для покидающего резонатора излучения, распространяющегося в резонаторе в направлении от дифракционной решетки. После выходной грани установлена диафрагма, пропускающая только спектральное чистое излучение к усиливающей среде, проходя которую второй раз спектральное чистое излучение усиливается.

Параллельность входной и выходной граней первой призмы расширителя обеспечивает кратность телескопа для луча, идущего от дифракционной решетки на выход, такую же как для луча, идущего от дифракционной решетки к усиливающей среде. Поэтому выходной луч по своим геометрическим параметрам не отличается от выходного луча прототипа. В предложенном лазере нет и дополнительных потерь в сравнении с прототипом, поскольку в последнем входная грань первой призмы расширителя отражает как излучение, распространяющееся в резонаторе от зеркала через усиливающую среду, в котором фон и спектрально чистое излучение пространственно не разделены, так и излучатель, распространяющееся в резонаторе от дифракционной решетки, где это разделение есть, но используется первое, а последнее в силу конструкции призмы рассеивается.

В предложенном изобретении размеры дифракционной решетки меньше, чем в прототипе при одинаковых параметрах выходного излучения, т.е. уменьшается вращательный момент элемента, вращением которого обеспечивается перестройка спектрально чистого лазерного излучения, а следовательно, повышается быстродействие этого процесса. Кроме того, меньшие решетки менее трудоемки и соответственно дешевле, проще, чем в прототипе, проще и вся оптическая схема предложенного лазера.

Таким образом заявленный перестраиваемый лазер соответствует критериям изобретения "новизна" и изобретательский уровень".

На чертеже схематично изображен лазер с перестраиваемым по частоте спектрально чистым излучением.

Лазер состоит из усиливающей среды 1, зеркала 2, первой призмы 3 и последующих призм расширителя пучка, дифракционной решетки 4 и диафрагмы 5.

Лазер работает следующим образом.

Усиливающая среда 1, накачанная излучением накачки, люминесцирует в широкой области частот. Резонатор, образованный зеркалом 2, расширителем пучка с первой призмой 3 и дифракционной решеткой 4, обеспечивает генерацию достаточно узкой линии на частотах, определяемых угловым положением дифракционной решетки 4. При ее повороте полоса генерируемых частот перестраивается по области люминесценции усиливающей среды. Генерируемое излучение, смешанное с фоном люминесценции, попадая на дифракционную решетку 4, пространственно разлагается ею в спектр и направляется в сторону усиливающей среды 1. Часть разложенного излучения покидает резонатор через выходную грань первой призмы расширителя 3. На пути вышедшего излучения помещена диафрагма 5, которая пропускает спектрально чистое лазерное излучение к усиливающей среде, проходя которую второй раз, оно усиливается.

Все рабочие поверхности призм телескопа, кроме одной из параллельных граней первой призмы, максимально просветлены, как это обычно принято. Для промышленной реализации заявляемого устройства не требуется специальных неизвестных средств.

Таким образом, предлагаемое техническое решение отвечает и критерию "промышленная применимость".

Формула изобретения

ЛАЗЕР С ПЕРЕСТРАИВАЕМЫМ ПО ЧАСТОТЕ ИЗЛУЧЕНИЕМ с низким уровнем спектрально-неселективного фона, состоящий из зеркала, призменного расширителя пучка и дифракционной решетки, причем первая от усиливаемой среды призма расширителя выполнена с тремя рабочими гранями, из которых одна является входной для излучения, распространяющегося в резонаторе в направлении к дифракционной решетке, а также диафрагмы для пропускания спектрально чистого излучения к той же усиливающей среде, отличающийся тем, что, с целью упрощения оптической схемы и конструкции лазера, а также повышения быстродействия перестройки, одна из двух других рабочих граней первой призмы расширителя выполнена параллельной входной грани и является выходной для выходящего из резонатора излучения, распространяющегося в резонаторе в направлении от дифракционной решетки, а диафрагма установлена за выходной гранью этой призмы.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технической физике и может быть использовано в спектральной аппаратуре

Изобретение относится к нелинейной оптике и может быть использовано для обнаружения источников когерентного излучения при лидарных измерениях и в оптической локации

Изобретение относится к области лазерной техники, а именно к разработке составов пассивных модуляторов добротности (ПМД) оптических квантовых генераторов (ОКГ), и предназначено для неодимовых ОКГ, используемых в приборах оптической связи, дальнометрии и локации, физическом эксперименте и т.п

Изобретение относится к лазерной технике, а более конкретно к устройству твердотельных лазеров с преобразователем частоты излучения в третью гармонику, предназначенных для использования в технологии, медицине, метрологии, в научных исследованиях

Изобретение относится к области гироскопии и может быть использовано для измерения угловой скорости и пространственной ориентации движущихся обьектов

Изобретение относится к лазерной технике и может быть использовано при разработке перестраиваемых лазеров на красителе

Изобретение относится к импульсным твердотельным лазерам, работающим в режиме с электрооптической модуляцией добротности, и может быть использовано для получения мощных импульсов лазерного излучения в наносекундном диапазоне длительностей импульса с частотами повторения импульсов до 100 Гц в видимом и ближнем инфракрасном, в том числе безопасном для человеческого зрения, спектральных диапазонах для целей нелинейной оптики, лазерной дальнометрии, оптической локации и экологического мониторинга окружающей среды

Изобретение относится к лазерной технике, а более конкретно к неодимовым лазерам, генерирующим в области 1,060,1 и 1,320,1 мкм

Изобретение относится к лазерной технике и может использоваться в системах лазерной локации, связи, обработки, передачи и хранения информации, а также при создании лазерных технологических установок для высокоточной обработки материалов

Изобретение относится к лазерной технике и может использоваться в системах лазерной локации, связи, обработки, передачи и хранения информации, а также при создании лазерных технологических установок для высокоточной обработки материалов и медицинской техники

Изобретение относится к лазерной технике

Изобретение относится к лазерной технике

Изобретение относится к лазерной технике и может быть использовано в технологических, медицинских, метрологических, других лазерных установках и установках для научных исследований

Изобретение относится к лазерно-интерферометрическим детекторам гравитационно-индуцированного сдвига частоты генерации и может быть использовано для измерения первой производной потенциала гравитационного поля Земли, например напряженности гравитационного поля, или, что то же, ускорения свободного падения
Наверх