Способ очистки сточных вод от ионов свинца и меди

 

Использование: очистка сточных вод производства свинцовых белил, кронов, паст и др. Сущность изобретения: в сточную воду при перемешивании и температуре 65 - 69°С вводят 8 - оксихинолин в две стадии: на первой стадии осаждают ионы Pb 3,4 - кратным избытком реагента, а на второй - ионы меди 14 - кратным молярным избытком оксихинолина. Очистку ведут при pH 9 - 10, значение которого задают водным раствором аммиака. Продолжительность процесса 2,5 - 3ч. Остаточная концентрация ионов Cu и Pb - менее 0,1 мг/дм3. 1 з.п. ф-лы.

Изобретение относится к способам очистки сточных вод от ионов свинца и меди, может быть использовано в процессах очистки воды производства свинцовых белил, кронов, паст и др.

Известен способ очистки сточных вод от ионов свинца, включающий введение реагента (водорастворимой соли кальция и углекислой соли аммония), осаждение и отделение осадка [1].

Недостатки известного способа связаны с применением больших количеств реагентов (50-120-кратный избыток), длительностью процесса (10-20 ч).

Известны способы очистки сточных вод от ионов тяжелых металлов, в которых используется в качестве осадителя 8-оксихинолин [2 и 3].

Основным недостатком указанных способов является применение растворителя 8-оксихинолина, что приводит к вторичному значительному загрязнению сточной воды.

Наиболее близким к изобретению по технической сущности и достигаемому результату является способ очистки сточных вод от ионов тяжелых металлов, включающий введение реагента, осаждение и отделение осадка [4].

Согласно этому способу сточные воды, содержащие ионы тяжелых металлов, в частности свинца, обрабатывают раствором сульфата железа (III) при 60-65оС с последующей нейтрализацией едким натром. Раствор перемешивают 10 ч при 60-65оС для полной кристаллизации осадка, после чего осадок отделяют фильтрацией. Раствор сульфата железа вводят в количестве 15 кг на 1 м3 сточной воды, едкий натр - до 36 кг.

Данный способ характеризуется большим расходом реагентов, сложностью реализации процесса в связи с необходимостью длительного (10 ч) перемешивания при нагревании до 60-65оС. Кроме того, в данном способе осадок содержит смесь тяжелых металлов, что затрудняет дальнейшую переработку осадка.

Задачей изобретения является сокращение расхода реагентов, уменьшение длительности процесса, раздельное получение осадков, содержащих медь и свинец, исключение вторичного загрязнения воды реагентом.

Способ осуществляют следующим образом. В сточные воды производства свинцовых белил, содержащих свинец и медь в количествах 1,3-10 мг/дм3 и 0,2-2,0 мг/дм3 соответственно вводят 8-оксихинолин при перемешивании и температуре 65-69оС при соотношении 8-оксихинолин : Рb2+ = 3,4 : 1. После исчезновения хлопьев 8-оксихинолина прекращают перемешивание и обогрев и добавляют раствор аммиака до рН 9-10. В осадок выпадает оксихинолинат свинца. Сточную воду оделяют от осадка и проделывают с ней аналогичную операцию, но с 14-кратным избытком 8-оксихинолина по отношению к иону Cu2+. Общее время процесса 2,5-3,0 ч.

П р и м е р 1. К 0,5 дм3 сточной воды от производства свинцовых белил, содержащей свинец в количестве 3,3 мг/дм3 и медь в количестве 1,61 мг/дм3 добавляют 3,9 кг 8-оксихинолина при температуре 65оС, после чего систему перемешивают 15-20 мин до исчезновения хлопьев 8-оксихинолина, затем раствор аммиака до рН 9-10 и оставляют систему на 1 ч для осаждения оксихинолината свинца. Осветленную жидкость, содержащую менее 0,1 мг/дм3 свинца сливают. Концентрация ионов меди в жидкости не меняется.

Жидкость анализируют на содержание свинца и меди полярографическим методом. Присутствие в растворе других компонентов, помимо свинца, не позволяет определить концентрацию свинца в количестве менее 0,1 мг/л.

Полученный осадок оксихинолината свинца может найти применение в качестве катализатора химических реакций.

С осветленной жидкостью проделывают аналогичную операцию, но дозировка 8-оксихинолина составляет 25,8 мг. Конечное содержание Cu2+ в сточной воде - следы.

Полученный осадок оксихинолината меди имеет широкое применение в промышленности.

Суммарный расход 8-оксихинолина 59,4 г на 1 м3 сточной воды, раствора аммиака до 2 кг.

П р и м е р 2. К 0,5 дм3 сточной воды от производства свинцовых белил, содержащей свинец в количестве 3,3 мг/дм3 и медь в количестве 1,61 мг/дм3, добавляют 7,7 мг 8-оксихинолина при температуре 69оС, после чего систему перемешивают 15-20 мин до исчезновения хлопьев 8-оксихинолина, затем добавляют раствор аммиака до рН 9-10 и оставляют систему на 2 ч для осаждения. Оставленная жидкость содержит 1,81 мг/дм3 Рb2+ и 1,07 мг/дм3 Cu2+.

Таким образом, изменив соотношение 8-оксихинолина и ионов металлов, мы полностью не извлекаем ни один из ионов.

П р и м е р 3. К 0,5 дм3 сточной воды от производства свинцовых кронов, содержащей свинец в количестве 10 мг/дм3, добавляют 11,9 мг 8-оксихинолина при температуре 65оС, после чего систему перемешивают 15-20 мин до исчезновения хлопьев 8-оксихинолина, затем добавляют раствор аммиака до рН = 9-10 и оставляют систему на 2 ч для осаждения оксихинолината свинца. Осветленную жидкость, содержащую менее 0,1 мг/дм3 свинца сливают.

П р и м е р 4. К 0,5 дм3 сточной воды от производства свинцовых белил, содержащей свинец в количестве 1,3 мг/дм3 и медь в количестве 0,2 мг/дм3 добавляют 1,6 мг 8-оксихинолина при температуре 67оС, после чего систему перемешивают 15-20 мин до исчезновения хлопьев 8-оксихинолина, затем добавляют раствор аммиака до рН 9-10 и оставляют систему на 1 ч для осаждения оксихинолината свинца. Осветленную жидкость, содержащую менее 0,1 мг/дм3 свинца, сливают. Концентрация ионов меди в жидкости не меняется.

С осветленной жидкостью проделывают аналогичную операцию, но дозировка 8-оксихинолина составляет 3,2 мг. Конечное содержание Cu2+ в сточной воде - следы.

П р и м е р 5. К 0,5 дм3 сточной воды от производства свинцовых белил, содержащей свинец в количестве 4 мг/дм3 и медь в количестве 2 мг/дм3, добавляют 4,8 мг 8-оксихинолина при температуре 69оС. Дальнейшие стадии такие же, как в примере 4, за исключением второй дозировки 8-оксихинолина - 32 мг.

Результаты такие же, как в примерах 1 и 4.

Формула изобретения

1. СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ СВИНЦА И МЕДИ, включающий введение реагента, осаждение и отделение осадка, отличающийся тем, что в качестве реагента используют 8-оксихинолин, а очистку ведут при рН 9 - 10 в две стадии : на первой стадии осаждают ионы свинца 3,4-кратным молярным избытком 8-оксихинолина, а на второй - ионы меди 14-кратным молярным избытком реагента.

2. Способ по п.1, отличающийся тем, что значение рН процесса очистки задают водным раствором аммиака.



 

Похожие патенты:

Изобретение относится к водоочистке сточных, промывных и других вод от ионов металлов, нитратов, фосфатов, нефтепродуктов, цианидов, солей и других примесей

Изобретение относится к водоочистке сточных, промывных и других вод от ионов металлов, нитратов, фосфатов, нефтепродуктов, цианидов, солей и других примесей

Изобретение относится к способам, предотвращающим рост сульфат - восстанавливающих бактерий в системах поддержания пластового давления, добычи, подготовки и транспортированию нефти, и может буть использовано в нефтедобывающей промышленности

Изобретение относится к устройствам для очистки сточных вод как от органических, так и неорганических загрязнений, которые диспергированы или растворены в воде, и может быть использовано для очистки бытовых стоков или сточных вод различных промышленных предприятий

Изобретение относится к электрохимии, а именно к устройствам для активации различных растворов, и может быть использовано в процессах газоулавливания, водоочистки, обогащения руд и т.д

Изобретение относится к технологическим процессам обеззараживания жидких сред и может быть использовано для обеззараживания питьевых, сточных вод и других жидкостей производственных и хозяйственных предприятий

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх