Анализатор спектра

 

Изобретение относится к радиоизмерительной технике и может быть использовано в устройствах, с помощью которых можно наблюдать на экранах электронно-лучевых трубок (ЭЛТ) спектры исследуемых импульсных сигналов. Анализатор спектра содержит входной блок 1, калибратор 2, генератор 3, развертки, генератор 4 качающейся частоты, смеситель 5, усилитель 6 промежуточной частоты, квадратичные детекторы 7, 17, 25, частотный детектор 8, блок 9 дифференцирования, вентили 10, 20, блоки 11, 21 совпадения, усилители 12, 27 постоянного тока, ключи 13, 18, 22, 26, 28, 30, ЭЛТ 14, 23, 29, 31, перемножитель 15, полосовые фильтры 16, 24, фазоинвертор 19. 5 ил.

Изобретение относится к радиоизмерительной технике и может быть использовано в устройствах, с помощью которых можно наблюдать на экранах электронно-лучевых трубок (ЭЛТ) спектры исследуемых импульсных сигналов.

Целью изобретения является расширение диапазона спектрального анализа сигналов.

На фиг. 1 приведена структурная схема устройства; на фиг. 2 - частотная диаграмма, поясняющая образование дополнительных (зеркального и комбинационного) каналов приема; на фиг. 3-5 - временные диаграммы, поясняющие работу устройства.

Анализатор спектра содержит входной блок 1, калибратор 2, генератор 3 развертки, генератор 4 качающейся частоты, смеситель 5, усилитель 6 промежуточной частоты, первый квадратичный детектор 7, частотный детектор 8, блок 9 дифференцирования, первый вентиль 10, первый блок 11 совпадения, первый усилитель 12 постоянного тока, первый ключ 13, первую ЭЛТ 14, перемножитель 15, первый полосовой фильтр 16, второй квадратичный детектор 17, второй ключ 18, фазоинвертор 19, второй вентиль 20, второй блок 21 совпадения, третий ключ 22, вторую ЭЛТ 23, второй полосовой фильтр 24, третий квадратичный детектор 25, четвертый ключ 26, второй усилитель 27 постоянного тока, пятый ключ 28, третью ЭЛТ 29, шестой ключ 30 и четвертую ЭЛТ 31.

Анализатор спектра работает следующим образом.

Просмотр заданного диапазона частот Д осуществляется с помощью генератора 3 развертки, который периодически с периодом Тп по пилообразному закону изменяет частоту генератора 4 качающейся частоты. Одновременно генератор 3 развертки формирует горизонтальную развертку ЭЛТ 14, 23, 29 и 31, которая используется как ось частот. Ключи 13, 18, 22, 26, 28 и 30 в исходном состоянии всегда закрыты.

Принимаемый импульсный сигнал Uc(t) = Vc cos (2 fct+c),0tи, где Vc, fc, c,и - амплитуда, несущая частота, начальная фаза и длительность сигнала, с выхода входного блока 1 поступает на первый вход смесителя 5, на второй вход которого подаются частотные метки с выхода калибратора 2, а на третий вход подводится напряжение генератора 4 качающейся частоты: Uг(t) = Vг cos (2 fгt+1t2+г), 0 t Tn, где Vг, fг, г, Tn - амплитуда, начальная частота, начальная фаза и период повторения напряжения генератора; 1= = - скорость изменения частоты генератора; fg - девиация частоты.

На выходе смесителя 5 образуются напряжения комбинационных частот: f= fг+1t-fc= fпр+1t f= 2fг+2t-fc, где первый индекс обозначает канал, по которому принимается сигнал; второй индекс обозначает номер гармоники частоты генератора, участвующей в преобразовании несущей частоты принимаемого сигнала; Частота настройки fн1 и полоса пропускания f1 усилителя 6 промежуточной частоты выбраны следующим образом:
fн1 = fпр, f1 = 2 fпр
Частота настройки fн2, fн3 и полоса пропускания f2, f3 полосовых фильтров 16 и 24 соответственно выбраны следующим образом:
fн2 = fг, f2 = 2 fпр
fн3 = 2 fг, f3 = 2 fпр
Однако в полосу пропускания усилителя 6 промежуточной частоты попадает только напряжение частотой (см. фиг. 4а, б)
Uпр (t) = Vпр cos (2 fпрt+1t2+пр),
0 tи где Uпр= K1VcVг;
К1 - коэффициент передачи смесителя;
fпр = fг - fc - промежуточная частота. Это напряжение представляет собой преобразованный по частоте сигнал с линейной частотной модуляцией (ЛЧМ). Напряжение с выхода усилителя 6 промежуточной частоты подается на второй вход перемножителя 15, на первый вход которого поступает принимаемый сигнал Uc(t) с выхода входного блока 1. На выходе перемножителя 15 образуется напряжение
U1 (t) = V1 cos (2 fгt+1t2+г),
0 tи где V1= K2VcVпр;
К2 - коэффициент передачи перемножителя. которое выделяется полосовым фильтром 16, детектируется квадратичным детектором 17 и поступает на управляющий вход ключа 18, открывая его.

Напряжение Uпр(t) (см. фиг. 4,а) с выхода усилителя 6 промежуточной частоты одновременно поступает на входы квадратичного 7 и частотного 8 детекторов. Квадратичный детектор 7 выделяет огибающую импульса (см. фиг. 4в), которая поступает на первые входы блоков 11 и 21 совпадения. С выхода частотного детектора 8 видеосигнал (см. фиг. 4,г), форма которого соответствует закону изменения частоты fc1 импульса (см. фиг. 4,б), поступает на вход блока 9 дифференцирования, входной сигнал которого (см. фиг. 4,д) подается на входы вентиля 10 и фазоинвертора 19. Вентили 10 и 20 пропускают только положительные импульсы. Входной импульс (см. фиг. 4,е) вентиля 10 поступает на второй вход блока 11 совпадения. Так как напряжения (см. фиг. 4,в,е), поступающие на два входа блока 11 совпадения, занимают на временной оси один и тот же интервал, блок 11 совпадения срабатывает. Напряжение с выхода блока 11 совпадения (см. фиг. 4,ж) поступает на управляющий вход ключа 13, открывая его. При этом составляющие, частота которых лежит в полосе пропускания f1 усилителя 6 промежуточной частоты, усиливаются и после детектирования в квадратичном детекторе 7 и усиления в усилителе 12 через открытые ключи 18 и 13 поступают на вертикально-отклоняющие пластины ЭЛТ 14, на экране которой наблюдается амплитудный спектр сигнала, принимаемого по основному каналу на частоте fc (см. фиг. 3,а). На выходе фазоинвертора 19 образуется отрицательный импульс (см. фиг. 4,з), который не пропускается вентилем 20.

Если импульсный сигнал принимается по зеркальному каналу на частоте f3 (см. фиг. 3,б).

U3(t) = V3cos (2 f3 t + 3) ,0 t и, то в смесителе 5 он преобразуется в напряжения следующих частот:
f31=f3-fг-1t=fпр-1t.

f32= 2fг+2t-f3 Однако только напряжение частотой f31 попадает в полосу пропускания f1усилителя 6 промежуточной частоты
U(t)=Vcos2fпрt-1t2+, 0tu, где
V= K1V3Vг,
fпр = f3 - fг - промежуточная частота;
= 3-г Напряжение Uпр1(t) (см. фиг. 5,а) с выхода усилителя 6 промежуточной частоты поступает на второй вход перемножителя 15, на первый вход которого поступает принимаемый сигнал U3(t) с выхода входного блока 1. На выходе перемножителя 15 образуется напряжение
U2 (t) = V2 cos (2 fгt+1t2+г),
0 tи, где V2= K2V3V, которое выделяется полосовым фильтром 16, детектируется квадратичным детектором 17 и поступает на управляющий вход ключа 18, открывая его.

Напряжение Uпр1 (t) (см. фиг. 5,а) с выхода усилителя 6 промежуточной частоты одновременно поступает на входы квадратичного детектора 7, выделяет огибающую сигнала (фиг. 5б), которая поступает на первые входы блоков 11 и 21 совпадения. С выхода частотного детектора 8 видеосигнал (см. фиг. 5,г), форма которого соответствует закону изменения частоты f3 (см. фиг. 5,б), поступает на вход 9 дифференцирования, выходной сигнал которого (см. фиг. 5, д) поступает на входы вентиля 10 и фазоинвертора 19. Указанный сигнал не пропускается вентилем 10. На выходе фазоинвертора 19 образуется положительный импульс (см. фиг. 5,е), который через вентиль 20 (см. фиг. 5,ж) поступает на второй вход блока 21 совпадения. Так как напряжения (см. фиг. 5, в, ж), поступающие на два входа блока 21 совпадения, занимают на временной оси один и тот же интервал, то блок 21 совпадения срабатывает. Напряжение с выхода блока 21 совпадения (см. фиг. 5,з) поступает на управляющие входы ключей 22 и 30, открывая их. При этом составляющие, частота которых лежит в полосе пропускания fc усилителя 6 промежуточной чатоты, усиливается и после детектирования в квадратичном детекторе 7 и усиления в усилителе 12 через открытые ключи 18 и 22 поступают на вертикально-отклоняющие пластины ЭЛТ 23, на экране которой наблюдается амплитудный спектр сигнала, принимаемого по зеркальному каналу на частоте (см. фиг. 3,в).

Если импульсный сигнал
U(t) = Vcos(2ft+), 0tи принимается по первому комбинационному каналу на частоте fк1 (см. фиг. 3,в), то в смесителе 5 он преобразуется в напряжения следующих частот:
f11=fк1-fг-1t
f12=2fг+2t-fк1=fпр+2t
Однако только напряжение частотой f12 попадает в полосу пропускания f1 усилителя 6 промежуточной частоты
U(t) = Vcos(2fпрt+2t2+, 0tи где V= K1VVг - промежуточная частота
fпр= 2fг-f
пр=
Напряжение Uпр2 (t) (см. фиг. 4,а) с выхода усилителя 6 промежуточной частоты поступает на второй вход перемножителя 15, на первый вход которого поступает принимаемый сигнал Uк1 (t) с выхода входного блока 1. На выходе перемножителя 15 образуется напряжение
U3 (t) = V3 cos (4 fгt+2t2+г),
0 tи где V3= K2VV, которое выделяется полосовым фильтром 24, детектируется квадратичным детектором 25 и поступает на управляющий вход ключа 26, открывая его.

Напряжение Uпр2 (t) (см. фиг. 4,а) с выхода усилителя 6 промежуточной частоты одновременно поступает на входы квадратичного 7 и частотного 8 детектора. Квадратичный детектор 7 выделяет огибающую сигнала (см. фиг. 4,в), которая поступает на первые входы блоков 11 и 21 совпадения. С выхода частотного детектора 8 видеосигнал (см. фиг. 4,г), форма которого соответствует закону изменения частоты f (см. фиг. 4,б) поступает на вход блока 9 дифференцирования, выходной сигнал которого (см. фиг. 4,а) поступает на входы вентиля 10 и фазоинвертора 19. Выходной импульс (см. фиг. 4,е) вентиля 10 поступает на второй вход блока 11 совпадения. Так как напряжения (см. фиг. 4, в, е), поступающие на два входа блока 11 совпадения, занимают на временной оси один и тот же интервал, то последний срабатывает. Напряжение с выхода блока 11 совпадения (см. фиг. 4,ж) поступает на управляющие входы ключей 13 и 28, открывая их. При этом составляющие, частота которых лежит в полосе пропускания f1 усилителя 6 и промежуточной частоты, усиливаются и после детектирования в квадратичном детекторе 7 и усиления в усилителе 27 через открытые ключи 26 и 28 поступают на вертикально-отклоняющие пластины ЭЛТ 29, на экране которой наблюдается амплитудный спектр сигнала, принимаемого по первому комбинационному каналу на частоте fк1(см. фиг. 3,в). На выходе фазоинвертора 19 образуется отрицательный импульс (см. фиг. 4,з), который не пропускается вентилем 20.

Если импульсный сигнал принимается по второму комбинационному каналу на частоте fк2 (см. фиг. 3,г)
U(t) = Vcos(2ft+), 0tи, то в смесителе 5 он преобразуется в напряжения следующих частот:
f22= f-2fг-2t = fпр-2t,
f21= f-fг-1t
Однако только напряжение частотой f22 попадает в полосу пропускания f1 усилителя 6 промежуточной частоты
U(t) = Vcos(2fпрt-2t2+, 0tи, где V= K1VVг
fпр = fк2 - 2fг - промежуточная частота;
=
Напряжение Uпр3 (t) (см. фиг. 5а) с выхода усилителя 6 промежуточной частоты поступает на второй вход перемножителя 15, на первый вход которого поступает принимаемый сигнал Uк2 (t) с выхода входного блока 1. На выходе перемножителя 15 образуется напряжение
U4 (t) = V4 cos (4 fгt+2t2+г),
0 tи, где V4 = VV, которое выделяется полосовым фильтром 24, детектируется квадратичным детектором 25 и поступает на управляющий вход ключа 26, открывая его.

Напряжение Uпр3 (t) (см. фиг. 5,а) с выхода усилителя 6 промежуточной частоты одновременно поступает на входы квадратичного 7 и частотного 8 детекторов. Квадратичный детектор 7 выделяет огибающую сигнала (см. фиг. 5,в), которая поступает на первые входы блоков 11 и 21 совпадения. С выхода частотного детектора 8 видеосигнал (см. фиг. 5,г), форма которого соответствует закону изменения частоты f22 (cм. фиг. 5,б), поступает на вход блока 9 дифференцирования, выходной сигнал которого (см. фиг. 5,д) поступает на входы вентиля 10 и фазоинвертора 19. Указанный сигнал не пропускается вентилем 10. На выходе фазоинвертора 19 образуется положительный импульс (см. фиг. 5,е), который через вентиль 20 (см. фиг. 5,ж) поступает на второй вход блока 21 совпадения. Так как напряжения (см. фиг. 5,в,ж), поступающие на два входа блока 21 совпадения, занимают на временной оси один и тот же интервал, то блок 21 совпадения срабатывает. Напряжение с выхода блока 21 совпадения (см. фиг. 5,з) поступает на управляющие входы ключей 22 и 30, открывая их. При этом составляющие, частота которых лежит в полосе пропускания f1 усилителя 6 промежуточной частоты, усиливаются и после детектирования в квадратичном детекторе 7 и усиления в усилителе 27 через открытые ключи 26 и 30 поступают на вертикально-отклоняющие пластины ЭЛТ 31, на экране которой наблюдается амплитудный спектр сигнала, принимаемого по второму комбинационному каналу на частоте fк2(см. фиг. 3,г).


Формула изобретения

АНАЛИЗАТОР СПЕКТРА, содержащий последовательно включенные входной блок, смеситель, усилитель промежуточной частоты, частотный детектор, блок дифференцирования, первый вентиль и первый блок совпадения, второй вход которого через первый квадратичный детектор соединен с выходом усилителя промежуточной частоты, а выход - через первый ключ соединен с вертикально-отклоняющими пластинами первой электронно-лучевой трубки, горизонтально-отклоняющие пластины которой соединены с первым выходом генератора развертки, второй выход которого через генератор качающейся частоты соединен с вторым входом смесителя, последовательно подключенные к выходу входного блока перемножитель, первый полосовой фильтр, второй квадратичный детектор, второй ключ и первый усилитель постоянного тока, выход которого соединен с вторым входом первого ключа, при этом третий вход смесителя подключен к выходу калибратора, второй вход перемножителя соединен с выходом усилителя промежуточной частоты, а выход первого квадратичного детектора - с вторым входом второго ключа, отличающийся тем, что, с целью расширения диапазона спектрального анализа сигналов, в него введены последовательно соединенные фазоинвертор, второй вентиль, второй блок совпадения, третий ключ и вторая электронно-лучевая трубка, третья и четвертая электронно-лучевые трубки, последовательно соединенные второй полосовой фильтр, третий квадратичный детектор, четвертый ключ, второй усилитель постоянного тока и пятый ключ, а также шестой ключ, причем к выходу блока дифференцирования подключен вход фазоинвертора, второй вход второго блока совпадения соединен с выходом первого квадратичного детектора, второй вход третьего ключа соединен с выходом первого усилителя постоянного тока, а выход - с вертикально-отклоняющими пластинами второй электронно-лучевой трубки, вход второго полосового фильтра соединен с выходом перемножителя, второй вход четвертого ключа соединен с выходом первого квадратичного детектора, выход второго усилителя постоянного тока соединен с входом шестого ключа, второй вход которого соединен с выходом второго блока совпадения, а выход - с вертикально-отклоняющими пластинами четвертой электронно-лучевой трубки, второй вход пятого ключа соединен с выходом первого блока совпадения, а выход пятого ключа - с вертикально-отклоняющими пластинами третьей электронно-лучевой трубки, причем горизонтально-отклоняющие пластины второй, третьей, четвертой электронно-лучевых трубок соединены с первым выходом генератора развертки.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к радиоизмерительной технике и может быть использовано для измерения статистических характеристик флуктуаций частоты сигнала

Изобретение относится к радиотехнике и может быть использовано в радиоприемной и измерительной аппаратуре

Изобретение относится к вычислительной технике и может быть использовано в информационно-измерительных системах и системах управления

Изобретение относится к измерительной технике и может быть использовано в радиотехнических и информационно-вычислительных системах, функционирующих в реальном масштабе времени

Изобретение относится к автоматике и вычислительной технике

Изобретение относится к измерительной технике и предназначено для определения относительного содержания высших гармонических составляющих в сигнале при измерениях величины нелинейности различных устройств

Изобретение относится к радиоизмерительной технике и может быть использовано в радиолокации и связи, где широко применяются сигналы с комбинированной амплитудной модуляцией, линейной частотной модуляцией и фазовой манипуляцией

Изобретение относится к радиоизмерительной технике и может быть использовано в устройствах, с помощью которых можно наблюдать на экране электронно-лучевой трубки (ЭЛТ) спектр исследуемых сигналов

Изобретение относится к радиоизмерительной технике и может использоваться для наблюдения спектров стационарных сигналов и измерения их параметров, измерения уровня и частот сигналов, внеполосных и побочных колебаний в лабораторных, цеховых условиях и в условиях контрольно-измерительных органов с автоматической установкой частоты гетеродина на частоту выбранного для исследования сигнала

Изобретение относится к обработке оптической информации и может быть использовано для решения задач регистрации изображения спектра, получаемого в Фурье-плоскости оптоэлектронного спектроанализатора

Изобретение относится к области измерительной техники и может быть использовано для построения анализаторов спектра параллельного типа

Изобретение относится к электротехнике, а именно к релейной защите и противоаварийной автоматике электрических систем, и может быть использовано в цифровых системах защиты при прецизионном определении частоты сети

Изобретение относится к области радио- и измерительной техники и может быть использовано при разработке и модернизации анализаторов спектра и панорамных приемников

Изобретение относится к измерительной технике и предназначено для использования при спектральном анализе сигналов с постоянной относительной разрешающей способностью по частоте

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве высокоточного измерителя параметров радиосигналов в широкополосных системах связи, пеленгации и радиоразведке

Изобретение относится к измерительной технике и предназначено для спектрального анализа электрических сигналов

Изобретение относится к радиоизмерительным приборам

Изобретение относится к радиоизмерительным устройствам для высокочувствительного приемника-частотомера в системах связи, пеленгации и радиоразведки
Наверх