Состав для получения жидкостного инфракрасного светофильтра- теплоносителя

 

Изобретение относится к светотехнике. Использование: в инфракрасных светофильтрах отрезающего и полосового типов, поглощающих видимое излучение и коротковолновую часть ближнего ИК - излучения и пропускающих более длинноволновое ближнее ИК - излучение. Сущность: состав изготовлен на основе раствора красителей из класса фторзамещенных дифталоцианинов редкоземельных элементов структурной формулы М, где М - ион редкоземельного элемента, в перфторированных органических растворителях при концентрации красителя 510-5-10-3 моль/л,, растворитель - остальное. Изобретение позволяет обеспечить маскировку световых приборов со светофильтром в областях чувствительности человеческого глаза и приборов ночного видения в видимой и самой ближней ИК - частях спектра вплоть до = 1,5 2,25 мкм. 1 ил.

Изобретение относится к светотехнике, в частности к инфракрасным светофильтрам отрезающего и полосового типов, поглощающим видимое излучение и коротковолновую часть ближнего ИК-излучения и пропускающим более длинноволновую часть ближнего ИК-излучения.

Цель маскировка и охлаждение световых приборов со светофильтром, обеспечивающим поглощение излучения в области чувствительности человеческого глаза и приборов ночного видения в видимой и самой ближней ИК-областях спектра вплоть до = 1,5-2,25 мкм.

Известны ИК-светофильтры отрезающего типа на основе кубовых красителей в целлюлозе [1] органических красителях в резиновом покрытии на стеклянной подложке [2] триселенида сурьмы на прозрачной подложке [3] и антрахинового красителя в полимере [4] Известны также ИК светофильтры с многослойным диэлектрическим покрытием на стеклянной подложке [5] Недостатком целлюлозных и резиновых светофильтров [1] [2] являются большие потери полезного, более длинноволнового ближнего ИК излучения. Светофильтры [1] [2] [4] обладают слишком коротковолновой границей поглощения, не обеспечивая маскировку световых приборов с такими светофильтрами от приборов ночного видения и человеческого глаза, адаптированного к темноте. Сурьмяноселенидные светофильтры [3] выделяют вредные продукты разложения при их нагреве излучением светового прибора. Многослойные диэлектрические светофильтры [5] сложны в изготовлении, особенно при большом размере фильтров, требуемых в световых приборах.

Наиболее близким по своим характеристикам к изобретению является состав для получения светофильтра на основе фталоцианиновых и других органических красителях в полимере [6] Недостатком такого состава является слишком коротковолновая граница поглощения, что в результате не обеспечивает маскировку световых приборов со светофильтром от приборов ночного видения.

Указанные недостатки могут быть устранены при использовании состава для получения жидкостного инфракрасного светофильтра-теплоносителя на основе раствора красителей из класса фторзамещенных дифталоцианинов редкоземельных элементов структурной формулы [4 (CF3)3CPc2]M, где М ион редкоземельного элемента в перфторированных органических растворителях при концентрации красителя 510-5-10-3 моль/л, растворитель остальное. Полученные растворы красителей размещаются в кювете с прозрачными окошками, например, из сапфира, которая располагается на выходе светового прибора. Светофильтры обеспечивают поглощение видимого и частично ближнего ИК-излучения при основном максимуме длинноволновой полосы поглощения, соответствующем max, близкой к границе поглощения светофильтра и равной 1,4-2,15 мкм в зависимости от природы элемента М. При этом достигается маскировка световых приборов с такими светофильтрами в областях чувствительности человеческого глаза и приборов ночного видения. Высокая стабильность красителей к нагреву и действию излучения позволяет получить хорошие эксплуатационные характеристики светофильтров.

Важной особенностью жидкостных светофильтров является возможность дистанционного переключения режима работы световых приборов от закрытого к открытому и обратно путем перекачки жидкости в кювете светофильтра. Помимо этого, применение жидкостных светофильтров-теплоносителей позволяет осуществить добавочную функцию охлаждение светового прибора за счет значительной теплоемкости жидкости или ее прокачки, что значительно уменьшает рабочую температуру приборов при их нагреве излучением.

На чертеже приведены спектры поглощения (зависимости оптической плотности Д от длины волны ) растворов (CF3)3CPc2Lu) (а, б, в); (CF3)3CPc2Sm (г) и (CF3)3CPc2La (д) в фожалине (а), ФОЛ-63 (б), и ДО2(в, г, д) при концентрации 310-4 (а, г, д), 510-5 (б) и 10-3 (в) моль/л. Толщина слоя жидкости соответственно 0,7 мм (в), 2 мм (а, г, д) и 6 мм (б).

П р и м е р 1. Светофильтр на основе красителя [4 (CF3)3CPc2]Lu в фожалине (смеси производных перфторпирола и пиридина) при концентрации 310-4 моль/л, растворитель остальное. Спектр поглощения светофильтра показан на чертеже (а) значение max 1,4 мкм. В диапазоне =2,2-3,5 мкм поглощение не наблюдалось. После испытаний на термостабильность при температуре 100оС в течение 500 ч спектральные характеристики светофильтра практически не изменились. Аналогичный результат был получен после испытаний на фотостабильность, например, после освечивания светофильтра, находящегося в кювете со стеклянными окнами, лампой ДКСШ-500 мощностью 500 Вт на расстоянии 10 см от поверхности окна кюветы в течение 100 ч. П р и м е р 2. Светофильтр на основе раствора красителя [4 (CF3)3CPc2]Lu в жидкости ФОЛ-63 (смеси изомеров тримера гексафторпропилена С9F18) при концентрации 310-4 моль/л, растворитель остальное. Спектр поглощения светофильтра соответствует кривой а, значение max 1,4 мкм. В диапазоне 2,2-3,5 мкм поглощение не наблюдалось. После испытаний на термостабильность при температуре 120оС в течение 500 ч и фотостабильность в условиях примера 1 спектральные характеристики светофильтра практически не изменились.

П р и м е р 3. Светофильтр на основе раствора красителя [4 (CF3)3CPc2]Lu в жидкости DO2 (низкомолекулярном перфторированном полиэфире структурной формулы СF3-[(O-CF2)n (O CF2)m] O CF3при концентрации 310-4 моль/л, растворитель остальное. Спектр поглощения светофильтра соответствует кривой а, значение max 1,4 мкм. В диапазоне = 2,2-5,0 мкм поглощение не наблюдалось. После испытаний на термостабильность и фотостабильность в условиях примера 2 спектральные характеристики светофильтра практически не изменились.

П р и м е р 4. Светофильтр на основе раствора красителя [4 (CF3)3CPc2]Lu в жидкости DO2 при концентрации 510-5 моль/л, растворитель остальное. Спектр поглощения светофильтра соответствует кривой б, значение max 1,4 мкм. В диапазоне 2,1-5,0 мкм поглощение не наблюдалось. После испытаний на термостабильность и фотостабильность в условиях примера 2 спектральные характеристики светофильтра практически не изменились.

П р и м е р 5. Светофильтр на основе раствора красителя [4 (CF3)3CPc2]Lu в жидкости DO2 при концентрации 110-3 моль/л, растворитель остальное. Спектр поглощения светофильтра соответствует кривой в, значение max 1,4 мкм. В диапазоне = 2,2-5,0 мм поглощение не наблюдалось. После испытаний на термостабильность и фотостабильность в условиях примера 2 спектральные характеристики светофильтра практически не изменились.

П р и м е р 6. Светофильтр на основе раствора красителя [4 (CF3)3CPc2]Sm в жидкости DO2 при концентрации 310-4 моль/л, растворитель остальное. Спектр поглощения светофильтра показан на чертеже (г), значение max 1,71 мкм. В диапазоне = 2,4-5,0 мкм поглощение не наблюдалось. После испытаний на термостабильность и фотостабильность в условиях примера 2 спектральные характеристики светофильтра практически не изменились.

П р и м е р 7. Светофильтр на основе красителя [4 (CF3)3CPc2]La в жидкости DO2 при концентрации 310-4 моль/л, растворитель остальное. Спектр поглощения светофильтра показан на чертеже (д), значение max 2,17 мкм. В диапазоне = 2,5-5,0 мкм поглощения не наблюдалось. После испытаний на термостабильность и фотостабильность в условиях примера 3 спектральные характеристики светофильтра практически не изменились.

П р и м е р 8. Светофильтр на основе сульфофталоцианинов ванадила в меди в сополимере винилхлорида и винилацетата прототип имел значение max 0,69 мкм. Спектральные характеристики светофильтра мало изменились после испытаний на термостабильность и фотостабильность в условиях примера 1.

Таким образом, предлагаемый состав светофильтра превосходит по своим спектральным характеристикам прототип и обладает сопоставимой с ним стойкостью к действию излучения и тепла.

Формула изобретения

СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЖИДКОСТНОГО ИНФРАКРАСНОГО СВЕТОФИЛЬТРА-ТЕПЛОНОСИТЕЛЯ на основе фталоцианинового красителя, отличающийся тем, что он изготовлен на основе раствора красителей из класса фторзамещенных дифталоцианинов редкоземельных элементов структурной формулы где М ион редкоземельного элемента в перфторированных органических растворителях при концентрации красителя 5 10-5 10-3 моль/л, растворитель остальное.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к светотехнике, в частности к инфракрасным светофильтрам отрезающего и полосового типа, поглощающим видимое излучение и коротковолновую часть ближнего ИК-излучения и пропускающим более длинноволновое ближнее ИК-излучение

Изобретение относится к светотехническим устройствам и может применяться для освещения объектов, не допускающих перегрева, например растений и животных

Изобретение относится к области светотехники и интегральной оптики, связанной с созданием инфракрасных светофильтров отрезающего и полосового типа, поглощающих видимое излучение и пропускающих коротковолновое и длинноволновое ближнее инфракрасное излучение

Изобретение относится к области светотехники и интегральной оптики, связанной с созданием инфракрасных светофильтров отрезающего и полосового типа, поглощающих видимое излучение и пропускающих коротковолновое и длинноволновое ближнее инфракрасное излучение и предназначенных для защиты инфракрасных датчиков видеоконтрольных устройств и приборов ночного видения от паразитных помех, связанных с воздействием света видимого диапазона, а также для использования в оптических системах контроля подлинности документов, в системах охранной и пожарной сигнализации, в том числе в системах контроля и разграничения доступа и охраны периметра объектов, в видеодомофонах, видеоглазках и подобных устройствах
Изобретение относится к композиционным материалам, поглощающим инфракрасное излучение в ближней инфракрасной области, и может быть использовано, например, в оптических фильтрах и специальных панелях сложной формы. Композиционный материал включает переплетенные базальтовые волокна с диаметром от 70 до 200 мкм в количестве от 40 до 60 массовых процентов, пропитанные термопластичным полимером полифениленсульфидом (остальное). Изобретение приводит к увеличению поглощения излучения во всем диапазоне ближней ИК области спектра при одновременном повышении прочности материала. 5 пр.
Наверх