Поляризационно-селективное лазерное зеркало

 

Изобретение относится к лазерной технике, а именно к поляризующим лазерным зеркалам. Зеркало выполнено в виде многослойного диэлектрического покрытия, нанесенного на оптическую подложку 1, причем покрытие состоит из чередующихся слоев 2 и 3 двух диэлектриков с относительно высоким и низким показателями преломления. Один из нескольких слоев диэлектрика - слой 4 выполнен с односторонним или двухсторонним гофрированием поверхности слоя с периодом гофра 5, определяемым в зависимости от длины волны лазерного излучения и показателей преломления слоев. Показатели преломления, оптические толщины и количество слоев 2 и 3 покрытия определены условием получения заданного коэффициента отражения. В результате такого выполнения из-за наличия разницы скачка фаз для P-и S-компонент отраженного излучения будет интерферировать в фазе только одна из этих компонент. Благодаря этому достигается усиление поляризационно-селективных свойств зеркала. 3 ил.

Изобретение относится к лазерной технике, а именно к поляризующим лазерным зеркалам.

Цель изобретения усиление поляризационно-селективных свойств зеркала при сохранении высокого значения коэффициента отражения для выделяемой поляризации.

На фиг. 1 представлена конструкция зеркала с гофрированной поверхностью внешнего слоя; на фиг.2 условная схема дифракции в этом слое; на фиг.3 конструкция зеркала с гофрированной поверхностью слоя, прилегающего к подложке.

Поляризационно-селективное лазерное зеркало выполнено в виде многослойного диэлектрического покрытия, нанесенного на оптическую подложку 1, причем покрытие состоит из чередующихся слоев 2 и 3 двух диэлектриков с относительно высоким и низким показателями преломления. Один из нескольких слоев слой 4 диэлектрика выполнен с односторонним или двусторонним гофрированием поверхности слоя с периодом d гофра 5, определяемым из условия < d < где длина волны лазерного излучения; n1 показатель преломления слоя 4 диэлектрика с гофрированной поверхностью; n2,n3 показатели преломления сред, обрамляющих слой 4.

Показатели преломления, оптические толщины и количество слоев 2 и 3 покрытия определены условием получения заданного коэффициента отражения.

Принцип действия зеркала поясняется на фиг.2. Падающая за зеркало световая волна 6 в результате дифракции на гофре 5 дает волны нулевого 7 и первого 8 и 9 порядков дифракции, распространяющиеся в слое 4. Волны 8 и 9 в соответствии с уравнением дифракции распространяются под углом к направлению волны 7 нулевого порядка дифракции, sin =/dn1. Вне слоя 4 распространяются только волны 10 и 11 нулевого порядка дифракции, так как выполняется условие d < . Дифракционные волны 8 и 9 испытывают полное внутреннее отражение на границах 5 и 12 слоя и ограничены слоем 4. В результате повторной дифракции на гофре 5 часть энергии дифракционных порядков волн 8 и 9 перейдет в энергию волн 13 и 14 нулевого порядка в отраженном от зеркала пучке. Волна 7 нулевого порядка дифракции последовательно отражается от границ слоев 4,3 и 2 и после прохождения поверхности раздела (гофра 5) дает вклад в волну 10 нулевого порядка дифракции. Для световых пучков с поперечными размерами много большими толщин слоев многослойника можно пренебречь влиянием поперечного смещения волн 8 и 9 при отражении от слоев многослойника. В результате интерференции полей волн 13 и 14 и отраженной волны 10 нулевого порядка дифракции изменяется амплитуда волны, отраженной от зеркала. Результат интерференции зависит от величины набега фаз интерферирующих волн. Фазовый набег волны 7 при двойном проходе слоя 4 равен n1H+ где Н' толщина слоя 4, скачок фазы коэффициента отражения от многослойного покрытия в плоскости границы 12 раздела сред. Аналогично для дифрагированного поля фазовый набег равен n1Hcos+1, где 1 скачок фазы волн 8 и 9 при отражении от границы 12 раздела сред. Величина скачка фазы 1 дифрагированного поля волн 8 и 9 существенно различна для двух положений плоскости поляризации падающего света: 1Е, когда вектор электрического поля падающей на зеркало волны 6 направлен вдоль полос гофра и 1Н, когда вектор перпендикулярен направлению полос гофра. Разность 1E и 1Н отлична от нуля и определяется выражением E1-H1 2arctg Следовательно, различен и коэффициент отражения зеркала для двух состояний поляризации светового пучка.

П р и м е р На подложке 1 из плавленого кварца находится многослойное покрытие из двух диэлектриков: двуокиси циркония (слой 2) и двуокиси кремния (слой 3). Оптическая толщина каждого слоя равна четверти длины волны 0,6328 мкм. Слой 4 выполнен из двуокиси циркония и имеет толщину Н', равную 0,11 мкм. Поверхность слоя 4 выполнена с гофром, близким к прямоугольному, и имеет амплитуду гофра, равную 0,025 мкм, период гофра равен 0,4 мкм, ширина полос 0,2 мкм. Общее число слоев в многослойнике, включая слой 4, составляет 11. Коэффициенты отражения зеркала для двух положений плоскости поляризации падающего света составляют 99,9% и 91% П р и м е р 2. Поляризационно-селективное зеркало, выполненное согласно фиг. 3, представляет собой подложку 1 из плавленого кварца. Поверхность выполнена с гофром 5, имеющим проямоугольную форму профиля полос. Период гофра равен 0,4 мкм, ширина выступов 0,2 мкм, высота выступов 0,025 мкм. Поверх подложки находится многослойное диэлектрическое покрытие из чередующихся слоев двух диэлектриков: двуокиси циркония (слой 2) и двуокиси кремния (слой 3). Слои 2 и 3 имеют оптическую толщину, равную четверти длины волны 0,6328 мкм. Слой 4, прилегающий к подложке 1, выполнен из двуокиси циркония и имеет толщину Н', равную 0,015 мкм. Общее число слоев в многослойнике равно 9. Коэффициенты отражения для двух положений плоскости поляризации света равны 99,7% и 81% на длине волны 0,6328 мкм.

Формула изобретения

ПОЛЯРИЗАЦИОННО-СЕЛЕКТИВНОЕ ЛАЗЕРНОЕ ЗЕРКАЛО, выполненное в виде многослойного диэлектрического покрытия, нанесенного на оптическую подложку, причем покрытие состоит из чередующихся слоев двух диэлектриков с относительно высоким и низким показателями преломления, отличающееся тем, что, с целью усиления поляризационно-селективных свойств, один из нескольких слоев диэлектрика выполнен с одно- или двусторонним гофрированием поверхности слоя с периодом d гофра, определяемым из условия где длина волны лазерного излучения; n1 показатель преломления слоя диэлектрика с гофрированной поверхностью;
n2, n3 показатели преломления сред, обрамляющих слой диэлектрика с гофрированной поверхностью.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к водорастворимым красителям, а именно к 3-хлориндантрон-4,4l-дисульфокислоте формулы используемым для формирования сверхтонких селективных в области 620-680 нм поляроидных пленок для поляризационных светофильтров

Изобретение относится к оптическому приборостроению, в частности к технике спектроскопии Солнца, и может быть использовано для исследования и прогнозирования солнечной активности в интересах радиосвязи, космонавтики, медицины

Изобретение относится к оптическому приборостроению, более конкретно к эллиптическим и циркулярным поляризаторам света

Изобретение относится к элементам поляризационно-оптических систем и приборов , а именно к поляризаторам световых пучков
Изобретение относится к способу получения мультислоев на твердых поверхностях и может быть использовано в технологии электронных материалов, оптике, биологии

Изобретение относится к оптическому приборостроению, в частности к интерференционным светофильтрам, и позволяет увеличить коэффициент отражения светофильтра и расширить диапазон выделяемых длин волн Светофильтр состоит из ромбоидного сечения, выполненной из призмы прозрачного материала с показателем преломления п, на две равные смежные грани которой с углом ft между ними нанесены системы чередующихся эквидистантных прозрачных и полупрозрачных слоев

Изобретение относится к области оптического приборостроения, в частности к интерференционным покрытиям и может быть использовано для создания зеркальных, светоделительных фильтрующих и других многослойных покрытий для оптических элементов широкого применения, в том числе для лазерной техники в области длин волн от 0,4 до 9,0 мкм
Наверх