Способ изготовления алюмотитанатной керамики

 

Изобретение относится к производству керамических материалов многофункционального назначения. Для этого в шихту в качестве добавок вводят низшие оксиды титани со степенью окисления титана, меньшей четырех, обжигают образцы либо предварительно в вакууме, а затем на воздухе, либо только на воздухе. Технический результат выражается в уменьшении коэффицента термического линейного расширения (КТЛР) при сохранении прочностных свойств. Прочность на изгиб полученного материала составляет 36 - 55 МПа, КЛТР в интервале 293 - 1273 К 2,2-2,3 K-1 . 1 табл.

Изобретение относится к керамическим материалам многофункционального назначения, в частности к получению алюмотитанатной керамики с низким коэффициентом термического линейного расширения (КТЛР), используемой как конструкционный, огнеупорный и теплоизоляционный материал при работе в агрессивных средах при повышенных температурах и т.д.

Алюмотитанатную керамику, как правило, получают при спекании компактов из порошка алюмотитаната, полученного предварительно путем твердофазного синтеза из оксидов титана (IV) и алюминия (I). Для улучшения процесса спекания используется прием введения добавок в виде оксидов, например MgO, SiO2, B2O3, что приводит к понижению температуры спекания и упрочнению керамики за счет образования твердых растворов на границах керамического зерна.

Однако в этом случае в керамическом материале появляются посторонние фазы, что приводит к ухудшению величины КТЛР керамики.

Изучено также и влияние избыточного оксида алюминия (молярное отношение Al2O3/ТiO2 от 1,0 до 1,5) на микроструктуру, механические и тепловые свойства керамики из титаната алюминия [2] Недостатком известного способа является высокий КТЛР.

Наиболее близким к предлагаемому способу получения алюмотитанатной керамики является способ, при котором в шихту вводят добавки оксидов, в которых степень окисления металла отлична от степеней окисления алюминия и титана, например оксид магния [3] Известный способ имеет следующие основные недостатки: вводимая оксидная добавка не является изоморфной алюмотитанату, и поэтому ее влияние сказывается, в основном, в области межзеренных границ посредством образования твердых растворов. Вновь образующиеся фазы представляют собой гетерогенные включения в керамическом материале. Они способны повышать его прочность на изгиб, но всегда ухудшают величину КТЛР, что сужает область возможного применения керамики.

Задачей изобретения является разработка способа получения алюмотитанатной керамики, который позволил бы уменьшить КТЛР при сохранении прочностных (на изгиб) свойств.

В предлагаемую шихту в качестве добавок вводят низшие оксиды титана со степенью окисления, отличной от четырех, обжигают образцы либо предварительно в вакууме, а затем на воздухе, либо только на воздухе.

Характерным для предлагаемого способа является то, что в объеме керамического зерна никаких процессов с участием добавок не протекает. Введение добавок низших оксидов может быть осуществлено как по отдельности, так и в различных количественных сочетаниях их. За счет искусственного создания вакансий в формирующейся решетке алюмотитаната значительно ускоряется процесс твердофазного синтеза, протекающий в объеме керамического зерна одновременно с процессом спекания образующегося алюмотитаната.

Дефектность решетки приводит к концентрации вакансий на поверхности керамических зерен, что облегчает процессы массопереноса. Искусственное создание вакансий в решетке формирующегося алюмотитаната позволяет уменьшить время термообработки керамического материала, исключить введение посторонних фаз в его состав и тем самым получить материал с высокими прочностными и термическими свойствами.

Предлагаемый способ улучшения керамического материала из алюмотитаната реализуется следующим образом.

В качестве исходных оксидов титана (IV) и алюминия могут служить реактивные вещества с различной степенью чистоты. Частичное восстановление диоксида титана с целью реализации степеней окисления на атомах титана III, II, О можно проводить термическим восстановлением оксида титана (IV) в условиях вакуума при температурах 1673-1873 К с помощью мелкодисперсного порошка металлического титана или углерода.

Определенное расчетное количество низших оксидов титана вводится в шихту для получения оптимальной концентрации вакансий, которая определяется получающимся индексом при кислороде в оксиде титана. Реакционное спекание проводят при температуре 1773 К в условиях вакуума или на воздухе.

Предлагаемый способ может быть реализован в альтернативном варианте: в шихту из оксидов титана (IV) и алюминия в водят расчетное необходимое для восстановления в требуемой мере оксида титана количество углерода. Реакционное спекание проводят при температуре 1773 К предварительно в условиях вакуума, а затем на воздухе.

П р и м е р 1. Образцы размером 10х10х85 мм формуют методом полусухого прессования при удельном давлении 50 МПа. Шихту получают путем совместного помола 43,7 мас. оксида титана (IV), 55,7 мас. оксида алюминия и 0,6 мас. активированного угля, в мельнице с шарами, выполненными из ультрафарфора при соотношении материала и шаров, равном 1:3. В качестве дисперсионной среды используют дистиллированную воду или этиловый спирт. После обжига образцов в условиях вакуума и на воздухе при 1773 К по 2 ч и последующей механической обработке их прочность на изгиб, при трехточечном способе определения составила 20 МПа, КТЛР составил 2,0 10-6 К-1 в интервале 293-1273 К (см. таблицу).

П р и м е р 2. По технологии, описанной в примере 1, изготавливают образцы следующего состава: 56,4 мас. оксида алюминия и 43,6 мас. предварительно восстановленного в условиях вакуума оксида титана с индексом при кислороде 1,93. После обжига на воздухе при 1773 К 3 ч образцы имеют прочность 55 МПа и КТЛР составляет 2,2 10-6 К-1 в интервале 293-1273 К (см. таблицу).

П р и м е р 3. По технологии, описанной в примере 1, изготавливают образцы следующего состава: 56,6 мас. оксида алюминия, 39,9 мас. оксида титана (IV) и 3,5 мас. оксида титана (II). После обжига при 1773 К 3 ч и механической обработке образцы имеют прочность на изгиб 36 МПа, КТЛР составляет 2,3 10-6 К-1 при нагреве до 1273 К (см. таблицу).

П р и м е р 4. По технологии, описанной в примере 1, изготавливают образцы следующего состава: 56,6 мас. оксида алюминия, 42,1 мас оксида титана (IV) и 1,3 мас. металлического титана. После обжига при 1773 Е, 3 ч и механической обработке образцы имеют прочность на изгиб 20 МПа, КТЛР составил 2,0 10-6 К-1 в интервале температур 293-1273 К (см. таблицу).

Из полученных результатов можно сделать вывод: самые лучшие термические и прочностные свойства имеет керамический материал в примерах 2,3 т.е. когда в шихту вводят оксиды титаната со степенью окисления, отличной от четырех.

Формула изобретения

СПОСОБ ИЗГОТОВЛЕНИЯ АЛЮМОТИТАНАТНОЙ КЕРАМИКИ путем приготовления шихты из смеси оксидов алюминия и титана, формования и обжига на воздухе, отличающийся тем, что по крайней мере часть оксида титана вводят в шихту со степенью окисления титана, меньшей четырех.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к высокотемпературным безобжиговым массам для изготовления конструкционных текстолитов, компаундов и клеев, предназначенных для теплозащиты отдельных узлов космических аппаратов многоразового использования

Изобретение относится к производству огнеупорных материалов, преимущественно к высокоглиноземным, в частности к производству огнеупорных порошков для точного литья по выплавляемым моделям

Изобретение относится к керамическому материаловедению, в частности к получению пористого, прочного и термостойкого керамического материала для изготовления основы керамических фильтров и мембран, огнеприпаса с высокой химической стойкостью, а также пористых материалов для теплоизоляции и т.д

Изобретение относится к силикатной промышленности, в частности к защитным покрытиям, и может быть использовано для упрочнения огнеупорной футеровки вращающихся печей барабанного типа, выполненный из муллитокорундовых огнеупоров, магнезиально-шпинелидных огнеупоров, огнеупоров системы Al2O3-MgO-TiO2, огнеупорных бетонов различного состава с огнеупорностью не ниже 1750оС

Изобретение относится к керамическому материаловедению, а именно получению пористого, термостойкого и прочного керамического материала для изготовления термостойких изделий с высокой химической стойкостью и длительным сроком службы, применяемых в котлах дожигания попутных газов, огнеприпаса для обжига керамических изделий, для газовых горелок, изделий, работающих в условиях воздействия скоростного газового потока, и других изделий, где требуется высокая термостойкость

Изобретение относится к производству пористых керамических материалов, в частности на основе окиси алюминия, которые могут найти применение в качестве конструкционных теплоизоляционных материалов, работающих при высоких температурах и значительных механических напряжениях

Изобретение относится к производству огнеупорных материалов и может быть использовано для торкретирования наружной футеровки погружных патрубков установок внепечного вакуумирования стали
Изобретение относится к области изготовления керамических композиционных изделий

Изобретение относится к способам изготовления керамических композитных изделий, имеющих пористый сердечник с плотным поверхностным слоем, образующим единое целое с сердечником, которые могут быть использованы в горячих зонах двигателей внутреннего сгорания (вкладыши или облицовка, камеры сгорания, выхлопные отверстия и т.д.)

Изобретение относится к производству керамических материалов, а именно к получению корундовой керамики, используемой при изготовлении керамических узлов оборудования, устойчивых к износу, воздействию агрессивных сред и высоким статическим разрушающим нагрузкам
Изобретение относится к фрикционным спеченным материалам, применяемым в фрикционных и тормозных устройствах автомобилей, тракторов, самолетов и т.п

Изобретение относится к электротехнической, электронной промышленности и может быть использовано для изготовления электроизоляционных изделий, в частности оснований для резисторов
Изобретение относится к технологии огнеупоров, которые могут использоваться в черной и цветной металлургии, в стекловаренной, химической и других отраслях промышленности

Изобретение относится к производству огнеупорных изделий, в частности, для футеровки высокотемпературных металлургических агрегатов
Изобретение относится к искусственным волокнистым материалам, к стекловолокнистым огнеупорам
Изобретение относится к керамическим материалам и может быть использовано при изготовлении футеровки тепловых агрегатов, огнеприпаса, подставок для обжига керамики и т.д., работающих в условиях, где требуется высокая термостойкость

Изобретение относится к технологии изготовления керамических изделий в системе Al2O3 - Sic-C и может быть использовано в огнеупорной промышленности
Наверх