Способ получения силиката натрия

 

Сущность изобретения: готовят жидкое стекло взаимодействием кварцевого песка с раствором едкого натра при молярном соотношении SiO2:Na2O (2,0 2,8) 1, при 180 240°С и давлении 10 30 бар. Полученное жидкое стекло обрабатывают в зоне распылительной сушки горячим воздухом с температурой 200 300°С в течение 10 20 с до образования порошкообразного аморфного силиката натрия с влажностью 15 23 мас. (определена как потери при прокаливании при 700°С) и насыпным весом более 300 г/дм3 Порошкообразный силикат натрия загружают в трубчатую вращающуюся печь, снабженную наклонно расположенным устройством для продвижения твердого вещества, затем обрабатывают его в течение 1 60 мин при 250 500°С поступающим противотоком дымового газа. Трубчатую вращающуюся печь изолируют таким образом, чтобы температура ее внешней стенки была менее 60°С. Измельчают аморфный силикат натрия, вышедший из трубчатой вращающейся печи, с помощью механической дробилки до размеров частиц 0,1 12 мм. 3 з.п. ф-лы.

Изобретение относится к способам получения аморфного силиката натрия с содержанием влаги 0,3-6 мас. преимущественно 0,5-2 мас. и молярным соотношением SiO2:Na2O=(1,9-2,8):1 из жидкого стекла с минимальным содержанием твердого вещества 20 мас.

Кристаллический силикат натрия слоистой структуры с молярным соотношением SiO2: Na2O= (1,9-3,5):1 получают из жидкого стекла с содержанием твердых веществ 20-65 мас. в зоне распылительной сушки через стадию образования влагосодержащего аморфного силиката натрия. Отходящий газ, выходящий из зоны распылительной сушки, имеет минимальную температуру 140оС. Влажный аморфный силикат натрия прогревают в зоне прокаливания при температуре 500-800оС в течение 1-60 мин в присутствии возвратного продукта в минимальном количестве 10 мас. который представляет собой механически измельченный кристаллический силикат натрия, ранее вышедший из зоны прокаливания.

Недостаток известного способа состоит в том, что материал, поступающий на распылительную сушку, из-за своей незначительной плотности (100-250 г/дм3) требует большого объема и сильно пылит. Этим обусловлено введение возвратного продукта во время прокаливания при значительном повышении энергозатрат, а из-за увеличения объема поступающего материала возникает необходимость использования вращающейся трубы больших размеров.

Согласно изобретению названный недостаток при получении аморфного силиката натрия из жидкого стекла с минимальным содержанием твердого вещества 20 мас. можно устранить следующим образом.

Жидкое стекло получают взаимодействием кварцевого песка и раствора едкого натра при молярном соотношении SiO2:Na2O=(2,0-2,8):1 при температуре 180-240оС и давлении 10-30 бар. Жидкое стекло сушат сначала горячим воздухом в зоне распылительной сушки при температуре 200-300оС и времени пребывания 10-25 с, затем при температуре 90-130оС с выходящим из зоны распылительной сушки отходящим газом до образования порошкообразного аморфного силиката натрия с содержанием влаги (определена как потери при прокаливании при 700оС) от 15 до 23 мас. и насыпным весом более 300 г/дм3.

Порошкообразный силикат натрия загружают в трубчатую вращающуюся печь, снабженную наклонно расположенным устройством для продвижения твердого вещества, затем обрабатывают его в течение 1-60 мин поступающим противотоком дымовым газом при температуре 250-500оС. Трубчатую вращающуюся печь изолируют таким образом, чтобы температура ее внешней стенки была менее 60оС. Выходящий из печи аморфный силикат натрия измельчают с помощью механической дробилки до размеров частиц 0,1-12 мм.

Способ дальнейшей переработки может быть осуществлен следующим образом.

Измельченный силикат натрия размалывают с помощью мельницы до размеров частиц 2-400 мк, применяют механические мельницы с окружной скоростью 0,5-60 м/с. Применяют также воздухоструйную мельницу, футерованную керамикой шаровую мельницу, футерованную керамикой вибрационную мельницу.

Отходящий газ отсасывают из вращающейся трубчатой печи в ее средней зоне и в зоне загрузки порошкообразного аморфного силиката натрия с влажностью 15-23 мас. служащей выходом для газа. Затем газ очищают с помощью обеспыливающего фильтра. Силикат натрия, взятый из обеспыливающего фильтра, непрерывно смешивают с порошкообразным аморфным силикатом натрия на входе в трубчатую вращающуюся печь. Размолотый силикат натрия помещают в валковый уплотнитель, в котором прессуют компактные глыбы при давлении валков 20-40 кН/cм ширины валка.

Компактные глыбы после измельчения продавливают через сита и получают гранулят с насыпным весом 700-1000 г/дм3.

Силикат натрия может быть использован в качестве умягчителя воды.

Получают силикат натрия, хорошо поддающийся переработке, с высоким насыпным весом благодаря использованию низких температур и незначительной продолжительности пребывания в печи в процессе распыления жидкого стекла.

Благодаря незначительным потерям тепла через стенку трубчатой вращающейся печи вследствие ее хорошей изоляции не происходит налипания силиката натрия на стенку печи.

Необходимо применять низкоскоростные механические мельницы (дисковые, ударные, молотковые или вибрационные), чтобы избежать истирания металлических рабочих поверхностей.

Используют футерованные керамикой шаровые или вибрационные мельницы либо воздухоструйные для получения продукта тонкого помола, т.е. с диаметром частиц 6-10 мк. Благодаря облицовке не происходит загрязнения силиката натрия металлической пылью, обычно образующейся при истирании металлических деталей мельницы.

Предусмотрено значительное снижение пылевой нагрузки в отходящем газе за счет одновременного отсоса пылесодержащего отходящего газа в средней области вращающейся трубы и ее входного конца, т.к. пыль в первую очередь оседает при входе силиката натрия во вращающуюся трубу и тем самым снижает скорость газа на входе аморфного влажного силиката натрия.

Получают прессованием гранулят, устойчивый к истиранию и очень быстро растворяющийся в воде.

Остаточную жесткость определяют следующим образом. 2,5 г силиката натрия суспендируют в 1000 мл проточной воды с 18% жесткости (соответствует содержанию 85 мг Са и 15 мг Мg в 1 л). Суспензию перемешивают с помощью магнитной мешалки в течение 30 мин при 60оС со скоростью 500 об/мин. После быстрого охлаждения водой со льдом до 20оС суспензию фильтруют через мембранный фильтр (размер пор 0,45 мм). В прозрачном фильтрате определяют содержание Са и Mg с помощью атомно-абсорбционного анализа.

П р и м е р 1 (по уровню техники). В башне, где распыление проводят горячим воздухом (температура отходящего газа 145оС), из жидкого стекла с содержанием твердых веществ 45% получают аморфный дисиликат натрия, характеризующийся потерями при прокаливании 19% и насыпным весом 220 г/дм3.

С помощью дозирующего шнека подается непосредственно в разогретую трубчатую вращающуюся печь (длина 5 м, диаметр 78 см, угол наклона 1,2о) со стороны, противоположной пламени, смесь, состоящая из 60 кг аморфного дисиликата натрия с влажностью 18 мас. (потери определены в процессе прокаливания при 700оС) и 15 кг возвратного продукта (продукт получается после измельчения до размеров частиц 250 мк ранее выработанного продукта), в то время как готовый кристаллический продукт выходит со стороны пламени. Температура в самом горячем месте трубчатой вращающейся печи достигает 740оС.

Не наблюдается налипания продукта на стенку трубчатой вращающейся печи. Выходящий дисиликат натрия получается порошкообразным.

П р и м е р 2. (согласно изобретению). В никелированный цилиндрический автоклав с мешалкой загружают песок (39 мас. SiO2, размеры частиц 90%<0,5 мм) и 50%-ный раствор едкого натра в молярном соотношении SiO2:Na2О=2,15:1. Смесь нагревают при работающей мешалке и давлении водяных паров (16 бар) до 200оС и выдерживают при данной температуре в течение 60 мин. После этого в автоклаве снижают давление и после добавки 0,3 мас. перлита в качестве вспомогательного фильтрующего средства для выделения нерастворимых веществ и отфильтровывают при 90оС через дисковый фильтр, работающий под давлением. В качестве фильтрата получают прозрачное жидкое стекло с молярным соотношением SiO2:Na2O=2,04:1.

В башне с распыленным горячим воздухом, снабженной дисковым распылителем, которая нагревается посредством газовой камеры горения и соединяется с помощью пневматического очищающего рукавного фильтра с сепаратором, распыляется жидкое стекло. Камера горения устроена так, что температура горячего газа, поступающего в головную часть башни, около 260оС. Количество распыляемого жидкого стекла устанавливается таким образом, чтобы температура смеси силикат-газ на выходе из башни распыления составляла 105оС. Зная объем распылительной башни и пропускную способность газа через башню, рассчитывают время пребывания продукта, которое равняется 16 с. Аморфный дисиликат натрия, выделяемый на рукавном фильтре, имеет при незначительном пылении насыпной вес около 480 г/дм3, содержание железа около 0,01 мас. молярное соотношение SiO2:Na2O=2,04:1 и влажность (определены потери в процессе прокаливания при 700оС) 19,4% Средний диаметр частиц составляет 52 мм.

Трубчатая вращающаяся печь, описанная в примере 1, изолирована с помощью асбеста и обшивки из жести таким образом, чтобы при достижении температуры внутри печи 390оС температура ее внешней поверхности достигала максимально 38оС. В эту печь ежечасно загружают 60 кг аморфного дисиликата натрия, причем налипания продукта на стенки печи не наблюдается. Аморфный дисиликат натрия (Na2Si2O5), выходящий из печи и имеющий влажность 0,7 мас. (установлены потери в процессе прокаливания при 700оС), измельчают с помощью механической дробилки до частиц размером менее 6 мк, а после промежуточного охлаждения размалывают на дисковой мельнице (диаметр 30 см) с числом оборотов 400 мин-1 до частиц со средним диаметром 95 мк. Содержание железа в молотом продукте остается идентичным содержанию железа в дисиликате натрия, вводимого в трубчатую вращающуюся печь.

Отходящий газ из трубчатой вращающейся печи отсасывается на входе аморфного дисиликата натрия с влажностью 19,4 мас. (определена как потери при прокаливании при 700оС) и проходит через промывную башню. Каждый час с отходящим газом уносится 3 кг дисиликата натрия.

Остаточная жесткость дисиликата натрия, полученного указанным способом, составляет 2,5 мг Са/л и менее 1 мг Mg/л.

П р и м е р 3 (согласно изобретению). Пример 2 повторяется с некоторыми изменениями. В частности, температура внутри вращающейся трубчатой печи составляет 300оС, а на внешней обшивке 35оС. Аморфный дисиликат натрия, выходящий из трубчатой вращающейся печи, имеет влажность 5 мас. (определена как потери при прокаливании при 700оС). Остаточная жесткость полученного этим способом дисиликата натрия составляет 3,5 мг Са/л и 1,5 мг Mg/л.

П р и м е р 4 (согласно изобретению). Продукт, полученный в соответствии с примером 2, со средним диаметром частиц 95 мк измельчают с помощью противоточной мельницы с псевдоожиженным слоем и встроенным механическим просеивающим устройством. В зависимости от установленного числа оборотов просеивателя получают стойкий к истиранию дисиликат натрия со средним диаметром частиц 2-15 мк.

П р и м е р 5 (согласно изобретению). Продукт, полученный в соответствии с примером 2, далее измельчают с помощью шаровой мельницы, футерованной фарфором и наполненной корундовыми шарами. Получают стойкий к истиранию дисиликат натрия со средним диаметром частиц 5-14 мк в зависимости от продолжительности измельчения.

П р и м е р 6 (согласно изобретению). Продукт, полученный в соответствии с примером 2, перерабатывают в валковом уплотнителе с давлением уплотнительных валков 30 кН/см ширины валка с последующим измельчением в ситовом грануляторе и получением непылящего гранулята со средним диаметром частиц 900 мк, насыпным весом 870 г/дм3 и высокой стойкостью к истиранию.

Для определения стойкости к истиранию берут 50 г гранулята и обрабатывают в роликовой шаровой мельнице (длина 10 см, диаметр 11,5 см, 8 стальных шаров диаметром 2 см) в течение 5 мин с числом оборотов 100 мин-1.

После проведения испытаний на истирание средний диаметр частиц равняется 720 мк, что соответствует снижению значения данного параметра на 20% П р и м е р 7 (согласно изобретению). Пример 2 повторяется с некоторыми изменениями. В частности, отходящий газ из трубчатой вращающейся печи отсасывается в двух местах, а именно: около входа для аморфного дисиликата натрия с влажностью 19,4 мас. и дополнительно в том месте печи, которое удалено от входа на расстояние около 2 м в направлении оси. Оба потока отходящих газов соединяются, а содержащиеся в них твердые вещества отделяются с помощью теплостойкого рукавного фильтра. Отделенные твердые вещества поступают опять в трубчатую вращающуюся печь вместе с аморфным дисиликатом натрия с влажностью 19,4 мас. чтобы избежать значительных потерь дисиликата натрия. Благодаря этому повышается производительность печи до 70 кг/ч, что, однако, не ведет к налипанию продукта на стенки внутри печи.

П р и м е р 8 (пример сравнения). Пример 2 повторяется с некоторыми изменениями, в частности, в головной части распылительной башни горячий газ имеет температуру 330оС. Температура смеси силикат-газ, выходящей из распылительной башни, равна 140оС. Дисиликат натрия, осажденный в рукавном фильтре, имеет насыпной вес 250 г/дм3, влажность 17,9 мас. (определена как потери при прокаливании при 700оС), средний диаметр частиц 60 мк. Этот дисиликат натрия сильно пылит.

П р и м е р 9 (пример сравнения). Пример 2 повторяется с некоторыми изменениями. В частности, трубчатая вращающаяся печь изолируется таким образом, чтобы при температуре внутри печи 490оС максимальная температура внешней стенки составляла 150оС. Вследствие этого на внутренней стенке печи образуется многослойное налипание продукта, который необходимо часто механически удалять. Из печи выходит продукт большей частью в виде огромных глыб, трудно поддающихся измельчению в механических дробилках.

П р и м е р 10 (пример сравнения). При- мер 2 повторяется с некоторыми изменениями. В частности, измельченный с помощью механической дробилки дисиликат натрия размалывают в дисковой ударно-отражательной мельнице с числом оборотов 10000 мин-1, получая продукт со средним диаметром частиц 83 мк. Размолотый продукт имеет серый оттенок, и содержание железа составляет 0,02 мас.

Формула изобретения

1. СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТА НАТРИЯ, включающий распылительную сушку жидкого стекла с содержанием твердой фазы не менее 20 мас. и последующую термообработку, отличающийся тем, что, с целью обеспечения возможности получения аморфного продукта с молярным соотношением SiO2 Na2O (1,9 2,8) 1 и содержанием влаги 0,3 6,0 мас. используют жидкое стекло, полученное взаимодействием кварцевого песка и раствора гидроксида натрия в молярном соотношении при пересчете на оксиды SiO2 Na2O (2,0 - 2,8) 1 при 180 240oС и давлении 10 30 бар, распылительную сушку осуществляют воздухом с температурой 200 295oС в течение 10 -25 с до остаточной влажности образующегося порошкообразного аморфного силиката натрия, соответствующей потерям при прокаливании при 700oС 15,8 23,0 мас. и насыпному весу более 300 г/дм3, причем отходящие газы имеют температуру 90 127oС, затем осуществляют термообработку в трубчатой вращающейся печи, снабженной устройством для продвижения твердого вещества, с температурой внешней стенки менее 60oС в течение 60 мин при 270 490oС и после термообработки аморфный силикат натрия измельчают с помощью механической дробилки до размеров частиц от 0,1 до менее чем 6 мм.

2. Способ по п.1, отличающийся тем, что измельченный силикат натрия размалывают в мельнице до размера частиц 2 95 мкм.

3. Способ по п.2, отличающийся тем, что силикат натрия размалывают в воздухоструйной или шаровой, или в вибрационной мельницах, футерованных керамикой.

4. Способ по пп. 1 3, отличающийся тем, что на стадии термообработки из трубчатой печи в зоне загрузки силиката натрия и в средней зоне печи отбирают отходящий газ, выделяют из него на фильтре силикат натрия и возвращают постедний в печь в смеси с исходным силикатом натрия.

Приоритет по пунктам: 15.02.90 по пп 1 и 4, 25.10.89 по пп. 2 и 3.



 

Похожие патенты:
Изобретение относится к способам получения кристаллических силикатов натрия со слоистой структурой, молярным отношением SiO2:Na2O = (1,9 - 2,1) : 1 и содержанием влаги менее 0,3 мас.% из полученного путем обработки песка раствором едкого натра в молярном отношении SiO2:Na2O = (2,0 2,3) : 1 раствора жидкого стекла, содержащего по меньшей мере 20 мас.% твердого вещества

Изобретение относится к химической технологии, в частности к способам получения жидкого стекла

Изобретение относится к способам получения кристаллического силиката натрия слоистой структуры при молярном соотношении SiO2:Na2O = (1,9-2,1):1 и содержании влаги менее 0,3 мас.%

Изобретение относится к способам гидротермического получения раствора силиката калия

Изобретение относится к технологии получения жидкого стекла, которое широко применяется во многих отраслях промышленности, в частности в промышленности строительных материалов для повышения водонепроницаемости и прочности бетонов, для получения шлакощелочного вяжущего, регулирования свойств глинистых суспензий и других целей
Изобретение относится к технологии неорганических веществ, в частности к способу получения жидкого стекла

Изобретение относится к технологии получения жидкого стекла, в частности к способу гидротермического получения раствора силиката калия
Изобретение относится к технологии неорганических веществ, в частности к способу получения жидкого стекла
Изобретение относится к способу получения кристаллических силикатов натрия со слоистой структурой формулы Na2SixO2x+1, где х = 2-3

Изобретение относится к структурообразующей добавке для детергентной композиции, образованной водным раствором силиката щелочного металла, а именно натрия или калия, с молярным соотношением SiO2/M2O порядка 1,6 - 4, и неорганическим продуктом, инертным по отношению к силикату, причем вышеуказанный неорганический продукт составляет 5 - менее 55% от общего веса, в расчете на сухой вес, и весовое соотношение, остаточная вода, связанная с силикатом/силикат, в расчете на сухой вес, выше или равно 33/100, предпочтительно 36/100

Изобретение относится к способу получения водорастворимых силикатов из золы рисовой шелухи и может быть использовано при переработке отходов рисового производства с целью получения жидкого стекла для его использования в жировой, мыловаренной, химической, машиностроительной, текстильной, бумажной промышленности, для производства сварочных электродов, при изготовлении форм и стержней в литейном производстве и других отраслях

Изобретение относится к химической технологии, в частности к получению гелеобразующих водных растворов силиката натрия с высоким силикатным модулем

Изобретение относится к способу получения жидкого стекла, которое используется в строительстве, в нефтедобывающей промышленности

Изобретение относится к способу получения полисиликатов натрия, которые могут быть использованы в нефтедобывающей промышленности при гидроизоляции скважин, а также для изготовления водостойких теплоизоляционных материалов

Изобретение относится к технологии получения жидкого стекла для производства строительных материалов

Изобретение относится к получению жидкого стекла

Изобретение относится к промышленности строительных материалов и может быть использовано при производстве композиционных силикатных строительных материалов, пористых тепло- и звукоизоляционных материалов, клеевых твердеющих составов, адсорбентов, а также в других областях, использующих растворы силикатов натрия

Изобретение относится к технологии получения жидкого стекла, применяемого в качестве вяжущего, добавки или реагента в строительной, нефтедобывающей и других отраслях производственной деятельности
Наверх