Вкладыш для коаксиальной линии передачи

 

Использование: в качестве опор для внутреннего проводника коаксиальной линии передачи, согласующих четверть волновых трансформаторов и рассогласователей. Сущность изобретения: между внутренним и внешним проводниками коаксиальной линии передачи установлены элементы из диэлектрического материала. Каждый элемент выполнен в виде пластины с поперечным сечением в форме трапеции. Смежные пластины соединены между собой боковыми гранями. Приведена формула для расчета величины диэлектрической проницаемости материала пластин. 1 з.п. ф-лы, 1 ил.

Изобретение относится к радиотехнике СВЧ и может быть использовано в коаксиальных трактах СВЧ.

Диэлектрические вкладыши, размещаемые между наружным и внутренним проводниками коаксиальной линии передачи, могут использоваться в качестве опор для внутреннего проводника линии, согласующих четвертьволновых трансформаторов и рассогласователей с заданным КСВН. Во всех этих случаях для обеспечения заданного уровня согласования необходимо точно знать величину волнового сопротивления (Z) участка коаксиальной линии, содержащего диэлектрический вкладыш. Z определяется диаметрами наружного (D) и внутреннего (d) проводников участка линии, содержащих этот вкладыш, и действующим (эквивалентным) значением диэлектрической проницаемости (э ) в области размещения диэлектрика.

Известно Z ln (1) При выбранных D и d для обеспечения заданного необходимо обеспечить соответствующее значение э с достаточной точностью. Известны методы расчета слоистых структур диэлектриков в форме кольца, соосного с линией. Точный расчет э для диэлектрических вкладышей (шайб) сложной формы не представляется возможным, так как значение э в различных радиальных направлениях для этих конструкций разное, зависящее от формы шайбы. Способы точного определения интегрального значения э для этих конструкций (например, треугольной или звездообразной формы) не известны.

В общем случае отверстия могут быть заполнены диэлектриком с любой диэлектрической проницаемостью, отличающейся от диэлектрической проницаемости материала, так как формула для точного расчета э (2) где n 1,2. номера слоев диэлектрика; п диэлектрическая проницаемость n-го слоя диэлектрика; dn и dn+1 соответственно внутренний и наружный диаметры n-го слоя диэлектрика, справедлива при любых n.

Выбором соответствующих значений d и n может быть обеспечено требуемое э и Z участка линии, поэтому такая конструкция принципиально может быть использована для создания опор, согласующих трансформаторов и рассогласователей.

К недостаткам конструкции относится необходимость выполнения отверстий и особенно элементов их заполнения в виде дугообразных элементов (частей кругового кольца). Но так как многие диэлектрические материалы СВЧ выпускаются только в виде пластин сравнительно небольшой толщины, то изготовление из них дугообразных элементов (или цилиндров) не всегда возможно (особенно для линий больших диаметров), что ограничивает возможность применения этих материалов, усложняет конструкцию и технологию изготовления.

Задачей является обеспечение возможности создания вкладыша в виде опор, согласующих трансформаторов и рассогласователей, выполняемых из пластин диэлектрика, а техническим результатом обеспечение заданного значения волнового сопротивления участка коаксиальной линии, содержащего вкладыш, составленный из этих пластин. Для этого диэлектрические пластины, образующие вкладыш, имеют в поперечном сечении форму трапеций, боковые стороны которых совпадают с радиусами окружности поперечного сечения линии, образующими центральные узлы, сумма которых равна 2 а диэлектрическая проницаемость каждой пластины и расстояние от точек пересечения оснований трапеции с радиусами выбраны из соотношения э (3) где л и xi- диэлектрические проницаемости материала соответственно заполнения линии и диэлектрических пластин; аi и bi расстояния от оси коаксиальной линии до точек пересечения соответственно меньшего и большего оснований трапеции с любым из радиусов окружности поперечного сечения линии; i 1, 2 таким образом, чтобы значение э было равно заданному в пределах всех центральных углов. При этом в соответствии с выражением (1) обеспечено заданное значение Z.

Для упрощения расчетов конструкций и технологии изготовления пластины соединены между собой так, что образуют правильную призму или правильную усеченную пирамиду, расположенную соосно с проводниками линии.

Для расширения диапазона изменения э при использовании диэлектрических пластин малой толщины они соединены между собой таким образом, что образуют звездообразную призму или усеченную пирамиду. В предлагаемых конструкциях сохраняется возможность охлаждения проводников потоком воздуха.

Установлено, что диэлектрическая пластина (или отверстие в диэлектрике), поперечное сечение которой имеет форму трапеции, а боковые стороны совпадают с радиусами, сохраняет в любом радиальном направлении (в пределах образованного этими радиусами центрального угла) одно и то же значение эi вдоль любого радиуса Ri, т.е. одно и то же э в пределах всего центрального угла.

На чертеже представлена конструкция с произвольным расположением диэлектрических пластин 1-4, расположенных между проводниками коаксиальной линии с внутренним диаметром d и наружным диаметром D, поперечное сечение, где х1, х2, х3 диэлектрические проницаемости пластин 1, 2, 3; R1-Rn радиусы окружности поперечного сечения линии.

Все пластины имеют в поперечном сечении форму трапеций, боковые стороны которых совпадают в радиусами Ri. Каждый центральный угол, образованный этими радиусами, содержит хотя бы одну диэлектрическую пластину, сумма этих центральных углов равна 2 радиан, л xi. В верхней полуокружности представлен случай произвольного расположения пластин с разным значением хi, требуемое значение э обеспечивается соответствующим выбором аi, bi и хi. В нижней полуокружности пластины с одинаковым хi соединены между собой и образуют многогранник, требуемое значение э обеспечивается выбором соответствующих аi и bi.

В верхней полуокружности представлен диэлектрический вкладыш, составленный из пластин с диэлектрической проницаемостью х, образующих в любом поперечном сечении правильный многоугольник. В нижней полуокружности представлен диэлектрический вкладыш, составленный из пластин с той же диэлектрической проницаемостью х, имеющих меньшую толщину и образующих в любом поперечном сечении многоугольник звездообразной формы. И в том, и в другом случае вкладыш может иметь форму призмы или усеченной пирамиды с отверстием той же формы. При этом значение э будет одним и тем же для вкладышей, представленных на верхней и нижней полуокружностях.

Рассмотрим четырехугольник А1В1А2В2, представляющий собой поперечное сечение диэлектрической пластины с двумя параллельными гранями и диэлектрической проницаемостью х, размещенной в центральном угле, ограниченном радиусами R1-Rn так, чтобы боковые грани пластины совпали с радиусами R1 и Rn. Так как А1Аn B1Bn, то четырехугольник А1В1АnBn трапеция.

Для радиуса, например, R2 выражение (2) при 1 л; 2 х; d1= d2; d2 А2О; d3 B2О; d4 D можно записать эi (4)
Но из подобия треугольников ОВ1В2 и ОА1А2 (общий угол, В1В2 А1А2) следует

Точно также доказывается равенство
(5)
где аi, bi расстояния от точки О до точек пересечения любого радиуса с основаниями трапеции для любого центрального угла.

Таким образом, в пределах рассматриваемого центрального угла значение э будет одним и тем же в любом радиальном направлении, т.е. одним и тем же для всего центрального угла, содержащего диэлектрическую пластину. Поэтому трапециевидная и дугообразные формы поперечного сечения диэлектрической пластины оказываются эквивалентными (с точки зрения обеспечения заданного э).

Действительно в дугообразных (кольцевых) структурах конструкции-прототипа диаметры дуг остаются постоянными в пределах одного и того же центрального угла ( соnst). В предложенной конструкции расстояния аi и bi изменяются, но так как при этом изменяется и угол, под которым радиус Ri пересекает основания трапеций, то в результате имеет = const.

Из выражения (4) с учетом равенства (5) можно получить
(6) т.е. для пластин с разными значениями хi (пластины 1-4) всегда могут быть найдены соответствующие аi и bi, обеспечивающие заданное значение э для всего участка линии с диэлектриком, т.е. имеем эi э const, откуда следует справедливость выражения (3) для всего вкладыша и возможность обеспечения заданного Z в соответствии с выражением (1).

Для практического использования наиболее целесообразны вкладыши, составленные из одинаковых пластин диэлектрика так, чтобы они образовали правильные многогранники или многогранники, имеющие в поперечном сечении форму звезды. При этом многогранники могут быть либо призмой (основания одинаковые), либо усеченной пирамидой (основания не одинаковые). Во всех случаях в любом поперечном сечении должно выполняться равенство (6), т.е. и (3). При звездообразной форме оснований многогранника заданное значение э можно получить при использовании пластин меньшей толщины, чем в правильных многогранниках за счет большего угла наклона пластины к радиусу (увеличивается эффективная толщина пластины). Изменяя количество вершин (лучей) звезды, можно в достаточно широких пределах изменять э.Одно и то же значение э в звездообразной конструкции можно получить при меньших толщинах диэлектрических пластин ( соnst для верхней и нижней полуокружности). Технологически более удобны вкладыши в виде призмы, однако принципиально они могут быть выполнены и в виде усеченной пирамиды (в этом случае плоскости пластин, образующих вкладыш, не параллельны).

Предлагаемая конструкция дает широкие возможности для создания конкретных конструкций опор, согласующих трансформаторов и рассогласователей, так как обеспечивает заданное значение эффективной диэлектрической проницаемости для диэлектрического вкладыша, составленного из пластин диэлектрика, и изменения этого значения в достаточно широких пределах возможны за счет выбора толщины пластин, их расстояния от оси линии, числа граней и формы вкладыша, что позволяет использовать диэлектрики СВЧ, выпускаемые только в виде пластин. При этом обеспечиваются более широкая возможность в выборе диэлектрических материалов, большая технологичность и простота конструкции по сравнению с прототипом, возможность изменения э в широких пределах при использовании одного и того же типоразмера диэлектрика.

Для подтверждения возможности осуществления предложенной конструкции рассмотрим конструкцию диэлектрического рассогласователя для линии с воздушным заполнением ( л 1) сечением 35 х 15 мм. Диэлектрический материал пластины из микалекса ( х 6,5). Если выполнять вкладыш в виде правильной призмы, вписанной в линию (аi d, bi D), то, изменяя число граней (К) призмы, можно получить различные значения э. Например, э 1,18 при К 3, э 2 при К 4, э= 3,36 при К 6, э 4,3 при К 8. Технологически изготавливать такие призмы достаточно просто, при этом такой вкладыш помимо функции рассогласователя выполняет при всех значениях К еще и функции опоры для внутреннего проводника.


Формула изобретения

1. ВКЛАДЫШ ДЛЯ КОАКСИАЛЬНОЙ ЛИНИИ ПЕРЕДАЧИ, содержащий элементы из диэлектрического материала, размещенные между внутренним и внешним проводниками коаксиальной линии внутри пространств, ограниченных центральными углами, сумма которых равна 2 и имеющих в поперечном сечении форму трапеций, боковые стороны которых совпадают с радиусами, образующими центральные углы, отличающийся тем, что каждый элемент из диэлектрического материала выполнен в виде пластины, при этом величина диэлектрической проницаемости материала каждой пластины и расстояния от продольной оси коаксиальной линии до точек пересечения радиусов с меньшим и большим основаниями трапеции выбраны из соотношения

где D внутренний диаметр внешнего проводника коаксиальной линии;
d наружный диаметр внутреннего проводника коаксиальной линии;
э величина эквивалентной диэлектрической проницаемости вкладыша в пределах всех центральных углов;
л величина диэлектрической проницаемости материала заполнения коаксиальной линии;
xi величина диэлектрической проницаемости материала i-й пластины (i 1, 2, 3),
ai, bi расстояния от продольной оси коаксиальной линии до точек пересечения радиуса соответственно с меньшим и большим основаниями трапеции i-й пластины.

2. Вкладыш по п.1, отличающийся тем, что каждая пластина соединена своей боковой гранью с соответствующей боковой гранью смежной пластины.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в различных радиотехнических системах СВЧ-диапазона

Изобретение относится к устройствам СВЧ и может быть использовано к коаксиальных трактах

Изобретение относится к устройствам СВЧ и может быть использовано в коаксиальных трактах

Изобретение относится к радиотехйике СВЧ:и может быть использовано в коаксиальных трактах СВЧ

Изобретение относится к коаксиальным линиям связи для передачи высоковольтных [ВВ] наносекундных импульсов напряжения и может быть использовано как в радиолокации, так и при исследовании воздействия излучения на среды и объекты

Изобретение относится к тонкопленочному многослойному электроду, связанному по высокочастотному электромагнитному полю, который используется в диапазонах СВЧ, субмиллиметровых или миллиметровых волн, а также к высокочастотной линии передачи с использованием данного тонкопленочного многослойного электрода, высокочастотному резонатору с использованием данной тонкопленочной многослойной линии передачи, высокочастотному фильтру, содержащему высокочастотный резонатор, и высокочастотному устройству, содержащему данный тонкопленочный многослойный электрод

Изобретение относится к области радиотехники и может быть использовано для обеспечения бесконтактной связи с абонентами и в качестве излучателя в системах антенн

Изобретение относится к области радиотехники и может быть использовано в качестве излучателя в системах контроля антенн, расположенных в проводящих средах

Изобретение относится к радиотехнике и может быть использовано в антенных системах или как распределенная антенно-фидерная система для беспроводного доступа к различным системам телекоммуникаций

Изобретение относится к радиотехнике и предназначено, в частности, для настройки коаксиального фидера маломощного телевизионного передатчика УВЧ диапазона

Изобретение относится к области радиотехники, а именно к выполнению коаксиальной линии, по которой благодаря улучшенному охлаждению могут передаваться мощности высокочастотного излучения более 1 МВт

Изобретение относится к радиотехнике СВЧ и сможет быть использовано в коаксиальных трактах СВЧ

Изобретение относится к радиотехнике, к конструктивному выполнению жестких коаксиальных трактов передачи и может быть использовано в антенно-волноводной и измерительной СВЧ технике. Техническим результатом является повышение надежности работы коаксиального тракта путем упрощения конструкции за счет сокращения количества деталей. Коаксиальный тракт состоит из корпуса 1, в котором выполнены пазы прямоугольного сечения. В пазы один на другой уложены две части изолятора 4. На сопрягаемых плоскостях частей изолятора 4 имеются пазы, удерживающие помещенный в них внутренний проводник 3. Вся конструкция закрывается плоской крышкой 2, замыкающей контур внешнего проводника коаксиального тракта. 5 з.п. ф-лы, 4 ил.

Изобретение относится к области техники высоких и сверхвысоких частот и предназначено для эффективной защиты входов радиоэлектронного оборудования от воздействия электромагнитных наводок. Технический результат - повышение эффективности защиты входов радиоэлектронного оборудования от внешних переменных магнитных полей за счет полной компенсации магнитной составляющей электромагнитной волны. Для этого компенсацию осуществляют путем разделения электромагнитной волны в одной или в нескольких коаксиальных линиях на две симметричные составляющие, фиксируют начальную точку (точку фиксации) пространства, где разделяют электромагнитную волну путем включения в каждую коаксиальную линию симметричного разветвителя, тем самым создают условия распространения составляющих волны навстречу друг другу в одной коаксиальной линии и/или в нескольких коаксиальных линиях, расположенных в плоскостях под углом друг к другу, устанавливают амплитуду и длительность встречных волн одинаковыми за равные промежутки времени, определяют точку компенсации магнитного поля каждой коаксиальной линии, сдвигают точку фиксации для каждой коаксиальной линии. При этом точка компенсации магнитной составляющей поля сдвигается, осуществляется продольное сканирование области коаксиальной линии. 3 з.п. ф-лы, 6 ил.
Наверх