Способ ультразвукового контроля

 

Изобретение относится к неразрушающему контролю материалов и изделий путем определения их физических свойств ультразвуковым методом. Цель изобретения повышение точности и информативности. Это достигается тем, что измеряют время прохождения ультразвука между первым излучающим и первым приемным преобразователями 1 и 2 ультразвука, контактирующими с изделием, измеряют время tэ распространения ультразвука в эталонной жидкой или газообразной среде между вторым излучающим и вторым приемным преобразователями 7 и 8 ультразвука, кинематически взаимосвязанными с первым излучающим и первым приемным преобразователями 1 и 2 так, что изменение расстояния между первым излучающим и первым приемным преобразователями пропорционально изменению расстояния между вторым излучающим и вторым приемным преобразователями. Затем определяют толщину l изделия и скорость V распространения в нем ультразвука по формулам, приведенным в описании. 1 ил.

Изобретение относится к исследованию материалов путем определения их физических свойств и может быть использовано при ультразвуковом контроле изделий и материалов.

Известен способ ультразвукового контроля, в котором измеряют время прохождения ультразвуковых колебаний в контролируемом изделии с известной длиной [1] Известен также способ ультразвукового контроля [2] в котором уравнивают время пробега импульса ультразвука в исследуемом образце с временем пробега импульса в эталонной жидкости путем изменения толщины слоя жидкости, а о физических свойствах образца судят по скорости распространения в нем ультразвука, которую определяют по формуле vи= где lи длина исследуемого образца; lэ толщина слоя эталонной жидкости; vэ скорость распространения ультразвука в эталонной жидкости.

Недостатком этих способов является их низкая технологичность из-за необходимости измерения длины исследуемых изделий.

Наиболее близким по технической сущности к предлагаемому является способ ультразвукового контроля [3] в котором выделяют два первых импульса (прямой и отраженный от границ изделия), прошедших от первого излучающего преобразователя ультразвука через исследуемое изделие к первому приемному преобразователю, и первый импульс от второго излучающего преобразователя, прошедший через иммерсионную жидкость к второму приемному преобразователю, установленному на таком же расстоянии от второго излучающего преобразователя, что и первый приемный преобразователь от первого излучающего преобразователя, и в зависимости от величины, амплитуды и длительности прошедших импульсов регистрируют наличие или отсутствие дефекта в изделии и его толщину.

Недостатком этого способа является низкая информативность и точность, обусловленные тем, что в изделии выявляют лишь наличие или отсутствие дефекта и в случае его наличия регистрируют толщину изделия, не соответствующую фактической.

На чертеже представлена схема осуществления предлагаемого способа.

На чертеже показаны приемный и излучающий преобразователи 1 и 2, установленные с возможностью размещения и прижима к их поверхности исследуемого изделия 3 на концах соединенных шарниром 4 двуплечих рычагов 5 и 6. На других концах рычагов установлены приемный и излучающий преобразователи 7 и 8, размещенные в эталонной среде 9. Преобразователи 2 и 8 соединены параллельно и подключены к выходу генератора импульсов измерителя 10 времени распространения ультразвука, а преобразователи 1 и 7 подключены к входам коммутатора 11, выход которого соединен с входом усилителя сигналов измерителя 10.

При осуществлении способа предварительно градуируют устройство, для чего коммутатором 11 подключают к входу измерителя 10 преобразователь 7 и при отсутствии изделия между преобразователями 1 и 2 устанавливают их на произвольном расстоянии l1 друг от друга, измеряют это расстояние мерой длины, измеряют время распространения ультразвука t1 между преобразователями 7 и 8, вводя измеренные значения в память программируемого калькулятора (не показан). Затем изменяют расстояние между преобразователями 1 и 2 и вводят в память измеренную величину этого расстояния l2 и соответствующее ему время t2, измеренное между преобразователями 7 и 8. После проведения градуировки помещают между преобразователями 1 и 2 исследуемое изделие, прижимают в нему с помощью рычагов 5 и 6 преобразователи 1 и 2, измеряют время распространения ультразвука tи между преобразователями 7 и 8, вводят его значение в память калькулятора, затем коммутатором 11 к входу измерителя 10 подключают преобразователь 1, измеряют время прохождения ультразвука tи в изделии между преобразователями 1 и 2, вводят его значение в память и определяют по программе значения толщины изделия и скорости распространения в нем ультразвука в соответствии с формулами l (tэ-t1)+l1 v После перемещения преобразователей 1 и 2 относительно изделия повторяют цикл измерения tэ и tи, вводят их значения в память калькулятора и определяют значения толщины и скорости для следующей контролируемой точки.

Использование предлагаемого способа позволяет повысить информативность ультразвукового контроля изделий и материалов благодаря определению в них скорости распространения ультразвука и увеличить точность контроля за счет определения фактической толщины исследуемых изделий.

Формула изобретения

СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ, при котором принимают ультразвуковые импульсы, прошедшие через изделие от первого излучающего преобразователя ультразвука к первому приемному преобразователю ультразвука, и ультразвуковые импульсы, прошедшие через эталонную среду, имеющую постоянную скорость распространения в ней ультразвука, от второго излучающего преобразователя к второму приемному преобразователю ультразвука, расстояние между которыми взаимосвязано с расстоянием между первым излучающим и первым приемным преобразователями ультразвука, отличающийся тем, что, с целью повышения точности и информативности способа путем определения фактической толщины изделия и скорости распространения в нем ультразвука, измеряют время прохождения ультразвука между первым излучающим и первым приемным преобразователями ультразвука, контактирующими с изделием, измеряют время распространения ультразвука в эталонной жидкой или газообразной среде между вторым излучающим и вторым приемным преобразователями ультразвука, кинематически взаимосвязанными с первым излучающим и первым приемным преобразователями так, что изменение расстояния между первым излучающим и первым приемным преобразователями пропорционально изменению расстояния между вторым излучающим и вторым приемным преобразователями, а затем определяют толщину l изделия и скорость v распространения в нем ультразвука по формулам

где tи время распространения ультразвука в изделии;
tэ время распространения ультразвука в эталонной среде,
l1, l2 расстояние между первым излучающим и первым приемным преобразователями, последовательно устанавливаемыми при предварительной градуировке;
t1, t2 измеренное в эталонной среде время распространения ультразвука между вторым излучающим и вторым приемным преобразователями, соответствующее расстояниям l1, l2.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к неназрушающим методам контроля изделий из композиционных материалов и может быть использовано для виброакустического распознавания изменений параметров, вызванных режимами испытаний или эксплуатации, в контролируемых изделиях от их эталонных значений

Изобретение относится к неразрушающему контролю изделий, а именно технологических каналов ядерных энергетических реакторов в контурах многократной принудительной циркуляции атомных электрических станций типа РБ МК

Изобретение относится к контрольно-измерительным средствам в волоконной оптике и может найти применение в производстве волоконно-оптических кабелей, а также при эксплуатации волоконно-оптических линий связи

Изобретение относится к неразрушающему контролю изделий и материалов и может быть использовано в ультразвуковой дефектоскопии и структуроскопии

Изобретение относится к неразрушающему контролю изделий и материалов и может найти применение в ультразвуковой дефектоскопии электропроводящих ферромагнитных изделий

Изобретение относится к области металлургии или машиностроения, а именно к неразрушающему контролю качества изделий и может быть использовано для обнаружения дефектов труб, сортового проката

Изобретение относится к неразрушающему контролю материалов и изделий и может быть использовано при ультразвуковой дефектоскопии и медицинской диагностике

Изобретение относится к ультразвуковой дефектоскопии толстолистового проката, имеющего разнотолщинность

Изобретение относится к ультразвуковой технике и может быть использовано в ультразвуковой медицинской аппаратуре, а также ультразвуковой дефектоскопии и при проведении ультразвуковых измерений

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля качества сварных соединений

Изобретение относится к области неразрушающего контроля и может быть использовано для оперативного контроля работоспособности ультразвуковых (у.з.) дефектоскопов в процессе их настройки и поиска с помощью них дефектов в разнообразных материалах и изделиях промышленности, например,в сварных соединениях, в железнодорожных рельсах

Изобретение относится к технике неразрушающих испытаний ультразвуковыми методами и может быть использовано в различных областях машиностроения для контроля материалов и изделий, преимущественно крупногабаритных и с большим затуханием ультразвука

Изобретение относится к газо- и нефтедобыче и транспортировке, а именно к методам неразрушающего контроля (НК) трубопроводов при их испытаниях и в условиях эксплуатации

Изобретение относится к неразрушающему контролю и может быть использовано для диагностики изделий переменной толщины сложной геометрии по параметрам их колебаний

Изобретение относится к неразрушающему контролю и может быть использовано при контроле качества, изменения структурно-фазовых состояний и физико-механических параметров материалов и элементов конструкций, а также в целях акустической спектроскопии массива горных пород, по измерению коэффициента затухания упругих волн и его частотной зависимости

Изобретение относится к области акустических методов неразрушающего контроля

Изобретение относится к неразрушающему контролю и может быть использовано для диагностики железобетонных строительных конструкций, обделок и облицовок гидротехнических туннелей
Наверх