Датчик пороговых величин давлений

 

Сущность изобретения: датчик пороговых величин содержит чувствительный элемент в виде гибкой оболочки 1, которая выполнена с радиально-окружным гофром 2 и является фрикционным излучателем. Оболочка 1 герметично замыкает полость корпуса 3, заполненного звукопроводящей текучей средой 4 через заправочный штуцер 5. На корпусе 3 закреплен приемник колебаний 6 через опору 7. Дается математическое выражение для параметров гофра 2. При превышении внешним давлением внутреннего радиально-окружной гофр 2 теряет устойчивость и происходит развитие системы складок по куполу оболочки 1, что сопровождается акустическими колебаниями, которые фиксируются с помощью приемника 6. Подстройка давления срабатывания датчика осуществляется изменением давления внутри полости корпуса 3. 3 ил.

Изобретение относится к приборостроению и может быть использовано для сигнализации о превышении избыточного давления, в частности в качестве датчика систем аварийной защиты в промышленности.

Известны датчики пороговых величин давлений, основанные на разных физических принципах [1] Известен датчик, основанный на использовании разрушающихся элементов [2] Наиболее близким к изобретению является датчик пороговых величин давлений, содержащий чувствительный элемент в виду купольной оболочки, теряющей устойчивость, закрепленной по торцу корпуса и сообщенной с механоакустической системой, состоящей из фрикционного излучателя, подвижного относительно корпуса звуковода и приемника колебаний, имеющего акустический контакт со звуководом [3] Недостатком известного устройства является отсутствие технологической гибкости необходимость замены чувствительного элемента для подстройки порогового давления.

Цель изобретения повышение технологической гибкости.

Цель достигается тем, что в устройстве оболочка, герметично замыкающая полость корпуса, выполнена гибкой, по месту своего закрепления имеет радиально-окружной гофр с параметрами W= A где W отклонение от сферической поверхности; A числовой коэффициент, равный 35,6-41,7; [ допустимое напряжение в оболочке; R радиус сферической поверхности; радиальная координата в цилиндрической системе координат; угловая координата; r опорный радиус оболочки;
Е модуль Юнга;
К четное число, 4-12;
n числовая величина, 1 < n<2, а звуковод выполнен в виде звукопроводящей текучей среды, которой заполнен внутренний объем корпуса.

На фиг.1 представлен общий вид датчика; на фиг.2 чувствительный элемент (гибкая оболочка); на фиг.3 схема кинематических деформаций.

Датчик пороговых величин давлений содержит чувствительный элемент 1, выполненный в виде гибкой оболочки с зоной радиально-окружного гофра 2, которая герметично замыкает полость корпуса 3, заполненного звукопроводящей текучей средой 4 через штуцер 5, сообщенный с источником давления текучей среды (на чертеже не показан). На корпусе 3 закреплен приемник колебаний 6 через внешнее крепление (опору) 7.

Устройство работает следующим образом.

В нормальном режиме внешнее давление Ра не превышает внутреннего Рi, гибкая оболочка 1 растянута, ее радиально-окружной гофр 2 вывернут наружу и акустические эффекты, связанные с развитием системы складок, отсутствуют.

В момент равенства внешнего давления Ра внутреннему Pi, сечение гибкой оболочки 1 разгружается от растягивающих усилий и оболочка 1 приобретает кинематическую подвижность. Радиально-окружной гофр 2, теряя устойчивость, проворачивается под действием избыточного давления Ра-Pi. Развитие системы складок по куполу оболочки (фиг.2 и 3) соответствует образованию полигональных форм потери устойчивости, распространяющейся на всю поверхность купола, что сопровождается акустическими явлениями типа "хлопка". Акустические колебания через звукопроводящую текучую среду 4 и стенки корпуса 3 поступают к приемнику колебаний 6, выход которого является выходом датчика.

Подстройка датчика пороговых величин давлений осуществляется изменением давления Pi, источником которого может служить грузопоршневой манометр, ресивер и т.п.

В качестве текучей среды 4 может использоваться вода, водные растворы солей, масла, расплавы солей, жидкие металлы.

Оболочка 1 может быть изготовлена из никелевой фольги толщиной 0,01-0,08 мм, бериллиевой бронзы и других материалов.

В качестве приемника колебаний 6 может быть использован пьезокерамический и другие преобразователи на частотный диапазон 40-2000 Гц.


Формула изобретения

ДАТЧИК ПОРОГОВЫХ ВЕЛИЧИН ДАВЛЕНИЙ, содержащий чувствительный элемент в виде купольной оболочки, теряющей устойчивость, закрепленной по торцу корпуса и сообщенной с механоакустической системой, состоящей из фрикционного излучателя, подвижного относительно корпуса звуковода и приемника колебаний, имеющего акустический контакт со звуководом, отличающийся тем, что оболочка выполнена гибкой и герметично замыкающей полость корпуса, при этом по месту своего закрепления оболочка имеет радиально-окружной гофр с параметрами

где W отклонение от сферической поверхности;
A числовой коэффициент от 35,6 до 41,7;
[] допускаемое напряжение;
R радиус сферической поверхности;
, соответственно радиальная и угловая координаты в цилиндрической системе координат;
r опорный радиус оболочки;
E модуль Юнга;
k четное число от 4 до 12;
1 < n < 2 числовая величина,
а звуковод выполнен в виде звукопроводящей текучей среды, которой заполнен внутренний объем корпуса.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно к измерительным преобразователям статического и быстроменяющегося давления

Изобретение относится к приборостроению и может быть использовано для измерения давления, температуры, напряженности магнитного поля в исследуемой среде

Изобретение относится к пьезорезонансным датчикам давления и направлено на повышение надежности барочувствительного элемента (БЧЭ) при работе при высоких давлениях, за счет исключения возникающего при нагрузке на рабочую поверхность мембраны и крышки изгибающего момента

Изобретение относится к измерительной технике, в частности может быть использовано для контроля давления (избыточного, абсолютного, разрежения, разности давлений) нейтральных и агрессивных сред

Изобретение относится к авиационной промышленности и может быть использовано в различных областях исследования аэродинамики для измерения давления

Изобретение относится к информационно-измерительной технике и может найти применение при измерении давлений жидких и газообразных сред

Изобретение относится к измерительной технике и может быть использовано для измерения давления в машиностроении, энергетике, авиационной технике, научной и газовой промышленности

Изобретение относится к области информационно-измерительной техники и может найти применение при измерении давлений и разности давлений жидких и газообразных сред

Изобретение относится к измерительной технике при определении давления во множестве точек

Изобретение относится к промысловому рыболовству и может быть использовано для тралового рыболовства на океанских акваториях в районах морских течений

Изобретение относится к измерительной технике, в частности к измерению импульсных и быстропеременных давлений, и может быть использовано для измерения импульсного давления гидродинамического возмущения большой мощности при применении разрядно-импульсной технологии

Изобретение относится к средствам преобразования быстропеременного и импульсного давления в электрический сигнал и может быть использовано в первичных преобразователях скорости потока вихревых расходомеров воды, газа, пара и других однородных сред
Наверх