Способ измерения оптических передаточных функций

 

Назначение: для измерения оптических передаточных функций (ОПФ) оптических сред. Сущность изобретения: при отсутствии оптической среды между тест-объектом (ТО) и фотографическим материалом формируют изображение ТО на оптическую щель, диспергируют выходящее из щели излучение на отдельные компоненты с различными длинами волн, формируют диспергированное изображение щели на фотографическом материале, определяют длины волн, содержащиеся в изображении ТО, определяют значения ОПФ So(, ), повторяют все операции при наличии оптической среды между ТО и фотоматериалом, определяют ОПФ S(, ), после чего рассчитывают ОПФ оптической среды по формуле F(, =S(, )/So(, ) где длина волны. 2 ил.

Изобретение относится к области формирования и передачи изображения и может быть использовано, в частности, для измерения оптических передаточных функций (ОПФ), характеризующих способность тех или иных оптических сред (например, объектива, атмосферы, фотослоя) формировать изображение определенного качества.

Известны способы и устройства измерения ОПФ со сканированием изображения (см. например, [1] [2] Зеге Л.П. и др. Перенос изображения в рассеивающих средах. Минск: Наука и техника, 1985).

Наиболее близким к заявляемому по технической сущности является фотографический метод определения ОПФ [2] В нем измерения ОПФ облаков выполняются в два этапа и предусматривают сканирование исследуемого изображения, зафиксированного на фотографическом материале. На первом этапе изображение тест-объекта (ТО), представляющего собой диффузно рассеивающую белую полосу длиной 6 м и шириной 11 см и расположенного на фоне черного тканевого полотнища, регистрируют на фотопленку типа А-2 с помощью фотоаппарата с длиннофокусным объективом МТО-1000. Экспериментально ОПФ облаков в натурных условиях атмосферы измерялись на наклонной трассе с использованием высотной метеорологической мачты (ВММ) в условиях, когда высота нижней границы облаков была меньше высоты ВММ (312 м). Длина трассы L 424 м, угол наклона трассы по отношению к поверхности земли 47о. На втором этапе анализируют полученное фотоизображение ТО, а именно с помощью микрофотометра ИФО-51 измеряют оптические плотности почернения D, по измеренным значениям определяют экспозиции Н, подействовавшие при фотосъемке, по ним на ЭВМ рассчитывались профиль распределения яркости изображения ТО и Фурье-преобразование профиля S()= B(x)cosxdx (1) где В(х) нормированное на освещенность в плоскости объекта распределение яркости изображения полосы в зависимости от координаты, направленной перпендикулярно полосе.

Аппаратная функция So() вычисляется аналогично (1) по распределению яркости изображения полосы, полученному на трассе в отсутствие облаков, а оптическая передаточная функция F() определяется по формуле F() S()/So().

Измерения проводились в спектральном диапазоне 0,55-0,7 мкм, что обеспечивалось набором цветных светофильтров. Для других длин волн необходимы соответствующий набор светофильтров и время на его установление. Отсюда очевиден недостаток прототипа, состоящий в ограниченности применения для сред с быстро изменяющимися оптическими характеристиками из-за его инерционности.

Целью изобретения является повышение быстродействия и информативности.

Цель достигается тем, что по способу измерения ОПФ оптической среды, например объектива или облака, заключающемуся в формировании изображения ТО, фиксировании его на фотографическом материале, который подвергают физико-химической обработке до и после постановки оптической среды, формирование изображения ТО осуществляют на оптической щели, диспергируют выходящее из щели излучение на отдельные компоненты с различными длинами волн, формируют диспергированное изображение щели на фотографическом материале, определяют длины волн, содержащиеся в изображении ТО, после фотометрирования изображения определяют ОПФ So(, ) и S(, ) до и после постановки оптической среды и ОПФ оптической среды рассчитывают по формуле F(, ) S(, )/So(, ), где длина волны.

Сущность способа поясняется фиг. 1 и 2, где 1 ТО с резкой границей, выполненный из белой и черной полуплоскостей (например, сочетание листа белого ватмана и черного бархата), 2 оптическая среда, например облако, 3 формирователь изображения ТО 1, например объектив типа ТАИР-ЗА для работы в полевых условиях, 4 регулируемая щель, например, типа УФ, 5 диспергирующий элемент, например призма или дифракционная решетка, 6 формирователь диспергированного изображения ТО 1, например объектив диаметров 30 мм и фокусным расстоянием 58 мм, 7 фотографический материал типа Т-17 или И-1020 с кадровым окном, проградуированным, например, по спектру поглощения приземной атмосферы, положение линий которого наносится на одну из сторон окна и впечатывается на каждый кадр, 8 автоматический микроденситометр, например, типа АМД-1, 9 измерительная щель, 10 датчик координат траектории сканирования щели 9, 11 фотоэлектронный умножитель, 12 двухканальный аналого-цифровой преобразователь (АЦП), 13 ЭВМ типа СМ-4, 14 графопостроитель, OXYZ и O'X'Y'Z' система координат в пространстве предметов и изображений соответственно.

Устройство, реализующее предложенный способ, работает следующим образом.

С помощью объектива 3 на регулируемой щели 4, симметричное раскрытие которой осуществляется с помощью микрометра в пределах 0-3 мм, формируется изображение ТО 1, прошедшее через оптическую среду 2. Излучение, прошедшее щель 4, спектрально диспергируется дифракционной решеткой 5 на отдельные компоненты с длинами волн, например, от 0,4 до 1,1. Спектрально диспергированное излучение фокусируется в плоскости наблюдения объектива 6, в результате чего формируется изображение щели 4. В фокальной плоскости объектива 6 располагается фотопленка 7 с кадровым окном. На каждую фотопленку впечатывается изображение стандартного сенситометрического клина для последующего определения на том же микроденситометре характеристической кривой D f(log H) использованного образца фотоматериала.

После химической обработки фотопленки 7 зафиксированные на ней изображения ТО 1 подвергаются измерению с помощью автоматического микроденситометра 8 типа АДМ-1. При этом первым этапом здесь является установка измерительной щели 9 таким образом, чтобы она, во-первых, была перпендикулярной направлению, в котором предполагается измерить ОПФ, и во-вторых, подвижки стола АМД-1 вдоль оси измерения длин волн (фиг. 1) были параллельны линии раздела черного и белого полей изображения ТО 1. Существенным на втором этапе является выбор ширины щели 9, определяемой спектральным интервалом , , и ее скорости сканирования, обеспечивающих требуемое отношение сигнал/шум и достаточное число выборок плотности почернения D(x, ) для формирования функции рассеяния линии (ФРЛ). При этом аналоговое напряжение, соответствующее сканирующей щели 9, поступает на управляемый вычислительной машиной 13 АЦП 12, а затем в память ЭВМ 13. ЭВМ производит быстрое Фурье-преобразование ФРЛ и строит графики D(x, ), D'(x, ), S(, ), So(, ) и F(, ). Пример получаемых таким образом графиков приведен на фиг. 1.

Для получения монохроматических ОПФ оптической среды 2 с помощью прототипа в спектральном диапазоне 400-1100 нм с разрешением 1 нм необходимо 583 сменных светофильтра. На смену всех светофильтров необходимо время как минимум 1/250 х 583 2,3 с. Кроме того, необходимо время на взведение затвора как минимум 0,5 с, а значит, общее время на смену светофильтров и взведение затвора равно Т (0,004 + 0,5) 583 292 с 4,9 мин.

В изобретении монохроматическое изображение ТО 1 при прочих равных условиях может быть получено за 1/250-2 с. Следовательно, выигрыш по быстродействию составляет величину как минимум 146 раз.

Таким образом, предлагаемый способ обладает повышенной информативностью и почти в 150 раз большим быстродействием по сравнению с прототипом.

Формула изобретения

СПОСОБ ИЗМЕРЕНИЯ ОПТИЧЕСКИХ ПЕРЕДАТОЧНЫХ ФУНКЦИЙ оптической среды, при осуществлении которого формируют изображение тест-объекта, фиксируют его на фотографическом материале, подвергают фотографический материал физико-химической обработке и фотометрируют изображение тест-объекта до и после введения оптической среды, определяют его оптические передаточные функции ( ОПФ ), определяют ОПФ аппаратной функции и по их отношению определяют ОПФ оптической среды, отличающийся тем, что перед фиксированием изображения тест-объекта на фотографическом материале его формируют на оптическую щель и диспергируют выходящее из щели излучение на отдельные компоненты с различными длинами волн, после чего определяют длины волн, содержащиеся в изображении тест-объекта, а при фотометрировании изображения тест-объекта определяют значения всех ОПФ с учетом длин волн, содержащихся в изображении тест-объекта.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Дымомер // 2045044
Изобретение относится к приборостроению и может найти применение для измерения дымности дизельных двигателей

Изобретение относится к способам контроля за содержанием воды в нефтях и нефтепродуктах и может быть использовано в промышленных и научно-исследовательских лабораториях, на нефтеперерабатывающих заводах, в нефтепромысловых управлениях, на пунктах сдачи-приемки нефтяного сырья и продуктов его переработки

Изобретение относится к измерительной технике и может быть использовано в автохозяйствах для определения правильности регулировки системы питания автомобилей с дизельными двигателями по оптической плотности отработавших газов
Изобретение относится к области получения и/или передачи механических колебаний, в частности, к области усиления упругих волн, например, для целей неразрушающего контроля или других целей

Изобретение относится к способам контроля физических параметров плоских светопропускающих материалов, например бумаги, и может быть использовано для непрерывного контроля качества бумажного полотна непосредственно в ходе технологического процесса его производства

Изобретение относится к фотометрии и может быть использовано для измерения спектрального коэффициента диффузного отражения (направленно-полусферического) при высоких температурах нагрева образца отсчетным методом по однолучевой схеме

Изобретение относится к измерениям оптических характеристик жидких сред как на пробах, так и при погружении измерительного устройства непосредственно в исследуемую жидкую среду

Изобретение относится к области исследования нестационарных процессов в придонном слое, где преобладают достаточно крупные частицы неорганического происхождения (> 50 мкм) с высокими концентрациями (> 10 г/л), а именно к средствам определения мгновенных концентраций взвешенного в воде материала, и может быть использовано для отыскания эмпирических зависимостей, описывающих процесс транспорта наносов

Изобретение относится к измерительной технике, а более конкретно к приборам для анализа газовых сред оптическими методами

Изобретение относится к измерительной технике, в частности к измерителям ослабления света мутной средой, и может использоваться для исследования и контроля окружающей водной среды

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами

Изобретение относится к технике получения керамических и металлокерамических материалов и может быть использовано при анализе качества различных шихт, в том числе содержащих нанодисперсные металлы
Наверх