Аппарат для очистки сточных вод

 

Использование: для удаления тяжелых металлов и других примесей из промышленных стоков и оборотных вод металлургических и металлообрабатывающих производств. Сущность изобретения: аппарат для очистки растворов от тяжелых металлов представляет собой барабан, заполненный гальваномассой и очищаемым раствором, контактируемыми при перемешивании с кислородом воздуха. Новым является то, что барабан закрепляется вертикально, перемешивание осуществляется при помощи шнека с увеличивающимся снизу вверх шагом винта, а подвод воздуха производится через пористую перегородку с дальнейшим барботированием. 1 ил.

Изобретение относится к области очистки сточных вод (СВ), в частности, к конструкции аппарата, предназначенного для удаления тяжелых металлов и других примесей из промстоков и оборотных вод металлургических и металлообрабатывающих производств, например, заводов по обработке цветных металлов.

Известен аппарат для очистки сточных вод, включающий барабан, заполненный гальваномассой, с патрубками подвода исходной воды, воздуха и отвода отработанной воды.

Недостатком известной конструкции является малая степень использования полезного объма аппарата в рабочем состоянии барабан может быть заполнен очищаемым раствором не более чем наполовину. Поэтому для обеспечения достаточно большой производительности аппарат должен иметь значительные размеры, а его изготовление требует повышенного расхода конструкционных материалов.

Целью изобретения является снижение габаритов и металлоемкости за счет повышения степени использования полезного объема аппарата.

На чертеже приведена схема предлагаемого аппарата.

Аппарат представляет собой вертикально расположенный барабан 1, снабженный загрузочной камерой 2, патрубками 3-5 для подвода исходной воды, воздуха и отвода отработанной воды, подачи сжатого воздуха через пористую перегородку 6 и шнека 7. Как и прототип предлагаемый аппарат выполняется из коррозионного металла (нержавеющая сталь, титан).

Аппарат работает следующим образом.

Вначале барабан 1 заполняют гальваномассой на 3/4 его объма и далее снизу вверх пропускают обрабатываемый раствор, через который барботируется воздух. Перемешивание гальваномассы осуществляется шнеком 7 с увеличивающимся по высоте шагом винта, вращающимся по вертикальной оси аппарата. Подъмная сила такого шнека убывает по высоте барабана, и частицы гальваномассы, перемещаемые в верхнюю половину, под действием гравитации устремляются вниз навстречу движущейся противотоком гальваномассе из нижней части барабана. В результате обеспечивается постоянное соударение частиц твердой фазы и контакта их с воздухом и раствором, что является основным условием эффективности очистки.

Другие способы перемешивания не обеспечивают необходимого распределения гальваномассы по высоте аппарата. Так при использовании шнека с постоянным шагом винта наблюдается перемещение гальваномассы в верхнюю часть аппарата. Наоборот, применение обычной лопастной мешалки приводит к тому, что из-за значительной разницы в плотности жидкой и твердой фаз гальваномасса главным образом располагается в нижней части аппарата.

Подача воздуха в аппарат осуществляется через штуцер 4, далее его поток разбивается о пористую перегородку 6 и барботирует через весь рабочий объм аппарата снизу вверх. Выполненная таким образом принудительная аэрация стоков в заявляемом варианте в отличие от прототипа интенсифицирует насыщение всей системы кислородом воздуха, что способствует увеличению содержания соединений железа (III).

Опытный образец аппарата с объмом 8 дм3 и рабочей зоной аппарата 7,2 дм3 испытан в лабораторных условиях для очистки сульфатных растворов тяжелых металлов. Аппарат загружали гальваномассой, состоящей из смеси железного скрапа с медью или коксом.

П р и м е р 1. Модельный раствор, содержащий (мг/дм3) 10,0 Zn; 1,2 Pb; 14,6 Cr; 20,0 Cu; 26,7 Ni; 500 SO42-; pH 2,9, подвергали очистке в статических условиях при 20oС, для чего 7 дм3 раствора заливали в аппарат и в течение 2 ч при непрерывной аэрации проводили осаждение тяжелых металлов с периодическим контролем состава жидкой фазы. Результаты опытов по извлечению металлов из растворов приведены в таблице.

П р и м е р 2. Проведены опыты по извлечению тяжлых металлов из сточных вод Московского завода по обработке цветных металлов в динамическом режиме при 20оС и производительности аппарата 30 80 дм3/ч. Состав исходного раствора, мг/дм3: 4,9 Cr (VI), 97,2 Cu, 10,7 Zn, 74,6 Ni, 1313 SO42-. Состав раствора после его очистки, мг/дм3: 0,5 Cu, 0,7 Zn, 0,8 Ni, Cr (VI) не обнаружено, 750 SO42-.

Как следует из приведенных данных, предлагаемый аппарат, не уступая прототипу по глубине очистки СВ, превосходит его по степени использования полезного объма, является более компактным и требует для изготовления существенно меньше дефицитной и дорогой нержавеющей стали. Эти преимущества становятся решающими при создании крупномасштабных аппаратов, предназначенных для очистки больших объмов стоков, либо каскадов аппаратов, применяемых при наиболее жестких требованиях к остаточному содержанию примесей.

Формула изобретения

АППАРАТ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД, включающий барабан, заполненный гальваномассой, с патрубками подвода исходной воды и воздуха и отвода обработанной воды, отличающийся тем, что, с целью снижения габаритов и металлоемкости за счет повышения степени использования полезного объема аппарата, барабан установлен вертикально и снабжен расположенным в нем шнеком с шагом винта, увеличивающимся снизу вверх, и пористой перегородкой для барботирования воздуха, установленной под шнеком, а патрубок подвода воздуха установлен в нижней части барабана.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к способам получения сверхчистой воды, преимущественно апирогенной воды, методом обратного осмоса и может быть использовано в медицине, фармацевтической и других отраслях промышленности, где требуется вода без микроорганизмов

Изобретение относится к электротехнике и может быть использовано в медицине для омагничивания водных и лекарственных растворов, в жидкостных отопительных системах и т.д

Изобретение относится к обработке воды, в частности к ее очистке, и может быть использовано в очистных сооружениях коммунального хозяйства и промышленных предприятий

Изобретение относится к обработке воды, в частности к ее очистке, и может быть использовано в очистных сооружениях коммунального хозяйства и промышленных предприятий

Изобретение относится к обработке воды, в частности к ее очистке, и может быть использовано в очистных сооружениях коммунального хозяйства и промышленных предприятий

Изобретение относится к способам доочистки сточных вод от ионов тяжелых металлов и может быть использовано в электрохимической, машиностроительной, металлургической и других отраслях промышленности

Изобретение относится к способам доочистки сточных вод от ионов тяжелых металлов и может быть использовано в электрохимической, машиностроительной, металлургической и других отраслях промышленности

Изобретение относится к химико-физическим способам очистки вод от железа и может быть использовано на водоочистительных станциях

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх