Устройство для изготовления оптических коррегирующих элементов

 

Использование: в оптическом приборостроении при изготовлении интраокулярных линз, контактных линз и очков. Сущность изобретения: в устройстве для изготовления оптических коррегирующих элементов с готовой оптической частью, выполненном в виде пресс-формы со сменными матрицами и пуансоном, имеющим центральные и опорные участки заданной формы, на центральном участке матрицы и/или пуансона образован микрорельеф со значением фазовой функции (u,v) равной (2m)j на границе каждой зоны с изменяемой высотой рельефа, определяемой математическим выражением, включающим функцию пропускания по эйконалу, определяемому в зависимости от дефекта зрения, где (u,v) ортогональные координаты фазового микрорельефа; m 1, 2, 3; j номер зоны фазового микрорельефа. 3 ил.

Изобретение относится к оптическому приборостроению и может быть использовано в офтальмологии при изготовлении интраокулярных линз (ИОЛ), контактных линз и очков.

Известно устройство для изготовления контактных линз с готовой оптической частью, выполненное в виде пресс-формы со сменными матрицей и пуансоном, установленными в направляющем цилиндре с возможностью взаимного перемещения (авт.св, СССР N 2468113, кл. G 02 С 7/04, 1969).

Однако данное устройство ограничено по диапазону оптических параметров готовой оптической части и не обеспечивает соосность оптических поверхностей матрицы и пуансона, а также имеет узкую сферу применения.

Известно устройство, выполненное с матрицей, установленной в стакане со сферической поверхностью направляющего цилиндра (авт.св. СССР N 292131, кл. G 02 С 7/04, 1971).

Это устройство также ограничено по оптическому диапазону параметров готовой оптической части и предназначено для изготовления исключительно контактных линз с традиционной оптикой.

Техническим результатом изобретения является расширение диапазона оптических параметров и расширение сферы применения.

Для этого матрица и пуансон имеют опорные и центральные участки заданной формы, на центральном участке поверхности матрицы и/или пуансона образован по зонам j фазовый микрорельеф со значением фазовой функции (u,v), равной (2 m)j на границе j-той зоны с непрерывно и монотонно изменяемой его высотой hj в пределах каждой из его зон в направлении нормали к поверхности, определяемой выражением hj(u,v) [(2m)j+1-(u,v)], где hj(u,v) высота фазового микрорельефа; j номер зоны фазового микрорельефа; (u,v) ортогональные координаты фазового микрорельефа; средняя длина волны видимого диапазона; (, n) cos, где n показатель преломления материала оптического элемента; угол поля зрения (угол между оптической осью устройства и нормалью к поверхности участка с фазовым микрорельефом); (u, v) -дефi(u,v)-b(u,v)+ +v, где o константа, определяющая начальную фазу функции дефi(u, v) функция пропускания по эйконалу, приведенная к соответствующей поверхности, определяемая в зависимости от дефекта зрения i; b(u,v) Rcos- при R или b(u,v) u tg при R
m 1,2,3,
R радиус кривизны поверхности центрального участка матрицы или пуансона, R считается положительным, если выпуклость поверхности, образующей фазовый микрорельеф оптического элемента, направлена к объекту зрения, и отрицательным при выпуклости поверхности, образующей фазовый микрорельеф оптического элемента, направленной к глазному яблоку.

Эконал, соответствующий коррекции миопии и гиперметропии (i 1), определяется соотношением
деф1(u,v)= -1 с нанесением фазового микрорельефа по радиально-симметричным зонам, где 1 -оптическая сила (в диоптриях), принимает положительную величину (1< 0 при коррекции гиперметропии) или отрицательную величину (1 <0 при коррекции миопии).

Эйконал, соответствующий коррекции астигматизма (i S), определяется соотношением
дефs(u, v)= -1 в горизонтальном (сагиттальном) направлении коррекции с фазовым микрорельефом, нанесенным по приблизительно прямолинейным вертикальным зонам, а эйконал, соответствующий коррекции астигматизма (i=t), определяется другим соотношением
деф(u, v)= -1 в вертикальном (тангенциальном) направлении коррекции с фазовым микрорельефом, нанесенным по приблизительно прямолинейным горизонтальным зонам, где s,t оптическая сила в сагиттальном и тангенциальном направлениях соответственно.

Эйконал, соответствующий коррекции миопии и гиперметропии, осложненных астигматизмом (i=2), определяется соотношением
деф2(u,v)= b(u,v)+ -1+
+ -1 с фазовым микрорельефом, нанесенным по зонам, близким к эллипсу.

Эйконал, соответствующий коррекции миопии и гиперметропии с требуемой глубиной резкости зрения (i= 3), определяется соотношением
деф3(u,v) -v +
+ -v с фазовым микрорельефом, нанесенным по радиально-симметричным зонам, где U,V переменные интегрирования;
(v,o) значение функций (u,v) при u v и v 0;
(U,V) значение функций (u,v) при U V;
(U, V) 1 3 b (u,v) 3 Z (r), где Z(r) C r2 при r и C (v) +sin
"+" с параксиальным фокусом за сетчаткой глазного яблока;
"-" с параксиальным фокусом перед сетчаткой глазного яблока;
d диаметр соответствующего фазового микрорельефа;
3 изменение оптической силы на глубине фокуса относительно сетчатки глазного яблока.

Выполнение фазового микрорельефа производится по автоматизированной технологии, включающей расчет на ЭВМ параметров фазового микрорельефа во множестве точек (u,v) с последующим получением посредством прецизионного фотопостроителя амплитудой маски (фотошаблона), из которой методом, например, электронного травления, получают требуемый фазовый микрорельеф с негативным (обратным) отображением рельефа относительно заданного оптического коррегирующего элемента.

Введение фазового микрорельефа на поверхности центрального участка матрицы и пуансона позволяет получить устройство для изготовления оптических коррегирующих элементов с гибридной оптической частью, обладающих минимальной толщиной и способных коррегировать глубокую аметропию, а также сложные дефекты зрения.

На фиг. 1 представлено устройство для изготовления искусственного хрусталика глаза (в разрезе); на фиг.2 устройство для изготовления контактных линз (в разрезе); на фиг.3 устройство для изготовления бифокальных очков (в разрезе).

Устройство для изготовления искусственных хрусталиков глаза (фиг.1), предназначенных для восстановления зрения с компенсацией аккомодации глазного яблока, выполнено в виде пресс-формы, состоящей из матрицы 1 и пуансона 2, установленных в направляющем цилиндре 3, помещенном в основании 4. Матрица 1 и пуансон 2 состоят из центрального d и опорного (D-d) участков. Между матрицей 1 и пуансоном 2 введена заготовка 5 из полимерного материала. На поверхности центрального участка пуансона 2 (при R ) по радиально-симметричным зонам нанесен фазовый микрорельеф 6 с функцией пропускания по эйконалу, соответствующему заданной коррекции гиперметропии (i= 1), определяемому соотношением
деф1(u, v)= -1. Опорные участки матрицы 1 и пуансона 2 расположены под углом к оптической поверхности пуансона 2 и имеют форму усеченного конуса с прерывистой боковой поверхностью (не показано), образующих опорную часть искусственного хрусталика в виде лепестков.

Работа устройства по изготовлению искусственного хрусталика заключается в нагревании заготовки 5 до температуры ее размягчения и последующем формировании при давлении пуансона 2 на заготовку 5 силой Р (нагреватель устройства и силовой пресс (не показаны).

Сочетание в устройстве сферической оптической поверхности и фазового микрорельефа позволяет изготавливать искусственные хрусталики глаза для коррекции глубокой гиперметропии с компенсацией аккомодации глазного яблока, достигаемой за счет перемещения искусственного хрусталика по оптической оси глаза с фокусировкой объекта зрения на сетчатке. Устройство позволяет также изготавливать искусственные хрусталики глаза для требуемой коррекции гиперметропии, осложненной астигматизмом.

Устройство для изготовления контактных линз (фиг.2), предназначенных для коррекции глубокой гиперметропии с повышенной глубиной резкости зрения, выполнено в виде пресс-формы, состоящей из матрицы 7 и пуансона 8, установленных в цилиндрическом корпусе 9, помещенном в основании 10. Матрица 7 и пуансон 8 имеют центральный d1 и опорный (D1-d1) участки. Между матрицей 7 и пуансоном 8 введена заготовка 11 из полимерного материала. На поверхности центральных участков d1 матрицы 7 и пуансона 8 по радиально-симметричным зонам образован фазовый микрорельеф 12 и 13 с функцией пропускания по эйконалу, соответствующему заданной гиперметропии с повышенной глубиной резкости зрения (i 2,3), определяемому соотношением
деф2,3(u,v) -v +
+ -v
Работа данного устройства аналогична работе устройства, представленного на фиг.1.

Наличие в устройстве двойного фазового микрорельефа, образованного на подложке сферической формы, позволяет изготавливать оптически комбинированные контактные линзы для коррекции афакичного глаза, при этом за счет повышения глубины резкости зрения компенсируется утрата аккомодации в глазном яблоке.

Устройство для изготовления бифокальных очков (фиг.3), предназначенных для коррекции миопии и гиперметропии, осложненных астигматизмом, выполнено в виде пресс-формы, состоящей из матрицы 14 и пуансона 15, установленных в цилиндрическом корпусе 16, помещенном в основании 17. Матрица 14 и пуансон 15 имеют центральный d2 и опорный (D2-d2) участки. Между матрицей 14 и пуансоном 15 введена заготовка 18 из полимерного материала, На участке d3 поверхности матрицы 14, расположенном под углом поля зрения 1, по зонам, близким к эллипсу, образован фазовый микрорельеф 19 с функцией пропускания по эйконалу, соответствующему коррекции гиперметропии, осложненной астигматизмом (i=4), а на участке d4 поверхности пуансона 15, расположенного под углом поля зрения 2, по зонам, близким к эллипсу, образован фазовый микрорельеф 20 с функцией пропускания по эйконалу, соответствующему коррекции миопии, осложненной астигматизмом (i 5).

Функция пропускания по эйконалу определяется соотношением
деф4,5(u,v) b(u,v)+ -1+
+ -1
Работа устройства аналогична работе устройства, представленного на фиг. 1.

Посредством фазового микрорельефа, выполненного на центральных участках поверхностей матрицы и пуансона, расположенных под заданными углами поля зрения, обеспечивается получение устройства для изготовления бифокальных очков, предназначенных для коррекции сложных дефектов дальнего и ближнего зрения.

Из приведенных примеров видно, что устройство для изготовления оптических коррегирующих элементов обладает широким диапазоном оптических параметров и значительной сферой применения.

За счет микроскопической высоты фазового микрорельефа (1,5-2,0 мкм) при смене матриц и пуансона устройство позволяет изготавливать 2-3 слойные оптические коррегирующие элементы.


Формула изобретения

УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ОПТИЧЕСКИХ КОРРЕГИРУЮЩИХ ЭЛЕМЕНТОВ с готовой оптической частью, выполненное в виде пресс-формы со сменными матрицей и пуансоном, установленными в направляющем цилиндре, отличающееся тем, что, с целью расширения диапазона оптических параметров и увеличения сферы применения, матрица и пуансон имеют центральные и опорные участки заданной формы, на центральном участке матрицы и/или пуансона образован по зонам j фазовый микрорельеф со значением фазовой функции (u,v), равной (2m)j на границе j-й зоны с непрерывно и монотонно изменяемой высотой hj рельефа в пределах каждой из его зон в направлении нормали к поверхности, определяемой выражением

где hj(u,v) высота фазового микрорельефа;
j номер зоны фазового микрорельефа;
(u,v) ортогональные координаты фазового микрорельефа;
средняя длина волны видимого диапазона;

n показатель преломления материала оптического элемента;
угол поля зрения (угол между оптической осью устройства и нормалью к поверхности центрального участка с фазовым микрорельефом);
константа, определяющая начальную фазу фазовой функции v ;
o функция пропускания по эйконалу, приведенная к соответствующей поверхности, определяемая в зависимости от дефекта зрения (i):
b(u,v) =

при R
или
b(u,v)=utg при R = ;
R радиус кривизны поверхности центрального участка матрицы и пуансона;
m 1, 2, 3,

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к медицинской технике, в частности к конструкции контактных линз для коррекции зрения и создания косметического эффекта

Изобретение относится к способам получения контактных линз, в частности косметических контактных линз

Изобретение относится к медицине, в частности к способам выбора контактной Очковой линзы для коррекции зрения при кератоконусе глаза

Изобретение относится к офтальмологии

Изобретение относится к получения полимеров для контактных линз

Изобретение относится к химии полимеров и позволяет получить полимерные гидрогели с повышенной водопроницаемостью - коэффициент водопроницаемости (53-79)<SP POS="POST">.</SP>10<SP POS="POST">-4</SP> м<SP POS="POST">3.</SP>м<SP POS="POST">-2.</SP>ч<SP POS="POST">-1</SP>, что достигается радикальной сополимеризацией смеси состава, мас.ч.: оксиалкилметакрилат 80 поливинилпирролидон мол.м

Изобретение относится к офтальмологии

Изобретение относится к медицинской технике

Изобретение относится к области офтальмологии, направлено на оценку, расчет и изготовление очковых линз за счет более совершенного учета зрительных характеристик

Изобретение относится к области медицины, к новым изделиям медицинской техники, а именно к новым средствам для очистки очковой оптики, а также к средствам для ухода за электронно-вычислительной, телевизионной и другой сложной бытовой техникой, имеющей устройства для визуализации информации (экраны, мониторы, табло, индикаторы)

Изобретение относится к области офтальмологии и направлено на создание очковых линз, при использовании которых понижены дискомфорт и утомляемость, что обеспечивается за счет того, что при проектировании очковых линз положительная относительная конвергенция, отрицательная относительная конвергенция, положительная относительная аккомодация, отрицательная относительная аккомодация и вертикальная фузионная вергенция, которые являются индивидуальными значениями измерения, относящимися к бинокулярному зрению, определены в качестве относительных значений измерения, по меньшей мере одна или обе из положительной относительной конвергенции и отрицательной относительной конвергенции включаются в индивидуальное относительное значение измерения, причем способ содержит определение оптических расчетных значений для очковых линз путем оптимизации бинокулярного зрения при использовании в качестве функции оценивания для оптимизации функции, полученной путем суммирования функций остроты бинокулярного зрения, включающих относительные значения измерения в качестве факторов в соответствующих оцениваемых точках объекта. 5 н. и 7 з.п. ф-лы, 45 ил.
Наверх