Способ определения давления газа в тепловыделяющих элементах ядерных реакторов

 

Использование: в измерительной технике при определении давления газа в твэлах. Сущность изобретения: на участок внешней поверхности оболочки твела воздействуют тепловым импульсом, измеряют перепад температуры с помощью терморезисторов, расположенных выше и ниже места нагрева. Дополнительно производят непрерывный нагрев того же участка твэла и измеряют перепад температуры с помощью терморезисторов, расположенных справа и слева от нагреваемого участка оболочки. Давление определяют по двум параметрам: величине интеграла по времени от сигнала перепада температуры, вызванного воздействием теплового импульса, и величине спектральной мощности сигнала перепада температуры при непрерывном нагреве участка оболочки. Перед проведением измерения перепада температуры разогревают оболочку в местах размещения терморезисторов до установившегося значения температуры. Способ позволяет повысить точность определения давления газа в облученных твэлах ядерных энергетических реакторов, а также позволяет найти относительное содержание гелия и ксенона в твэле без его разрушения. 9 ил.

Изобретение относится к измерительной технике и может быть использовано при определении давления газа в тепловыделяющих элементах ядерных реакторов, находящихся в защитной камере или бассейне выдержки.

Известен способ определения давления газа в тепловыделяющих элементах (твэлах) ядерных реакторов, заключающийся в том, что на участок внешней поверхности оболочки твэла воздействуют тепловым импульсом, измеряют перепад температуры на равных расстояниях от места воздействия теплового импульса выше и ниже участка нагрева и по предварительно полученной градуировочной зависимости определяют давление газа в тепловыделяющем элементе.

Известный способ недостаточно точен при исследовании облученных твэлов энергетических ядерных реакторов из-за разброса состава газовой среды твэла.

Техническим результатом, достигаемым изобретением, является определение с необходимой точностью давления газа в облученных твэлах энергетических ядерных реакторов. Кроме того, изобретение позволяет определить относительное содержание гелия и ксенона в квазибинарной газовой смеси твэла.

Технический результат достигается тем, что перед воздействием теплового импульса разогревают оболочку в местах измерения температуры до установившегося значения температуры, а также дополнительно производят непрерывный нагрев того же участка оболочки и регистрируют зависимость от времени перепада температуры оболочки справа и слева от нагреваемого участка, а давление определяют по двум параметрам: величине интеграла по времени от сигнала перепада температуры, вызванного воздействием теплового импульса, и величине спектральной мощности сигнала перепада температуры при непрерывном нагреве участка оболочки, при этом градуировочную зависимость двух параметров получают в виде функции от давления и состава бинарной газовой смеси в тепловыделяющем элементе ядерного реактора.

На фиг.1 представлена структурная схема устройства, реализующего способ; на фиг. 2 схема расположения чувствительных элементов; на фиг.3 структурная схема блока измерений; на фиг.4 характерный вид регистрируемого вертикального перепада температуры; на фиг.5 характерный вид регистрируемого горизонтального перепада температуры; на фиг.6 спектр сигнала; на фиг.7 расширенный спектр сигнала; на фиг.8 характерный вид мощности спектра сигнала при различном давлении газа в твэле; на фиг.9 характерный вид градуировочной характеристики.

Устройство для реализации способа (фиг.1) содержит направляющую воронку 1 с отверстием и неподвижный упор 2 для размещения исследуемого твэла 3, датчик 4 давления, шарнирно соединенный с механизмом 5 поджатия, выполненным в виде пневмоцилиндра, и блок 6 измерений, соединенный через интерфейсную плату 7 с ПЭВМ 8.

Датчик 4 давления (фиг.2) выполнен в виде каркаса 9 с резиновым ложементом 10, на котором расположены поверхностные чувствительные элементы, включающие нагреватель 11 и две пары терморезисторов 12 и 13, размещенные симметрично на одинаковом от него расстоянии и предназначенные для измерения перепада температуры оболочки твэла 3, причем терморезисторы 12 служат для измерения вертикального перепада температуры оболочки твэла 3 выше и ниже участка нагрева, а терморезисторы 13 для измерения горизонтального перепада температуры.

Блок измерений (фиг.3) содержит схему 14 переключения терморезисторов 12 и 13, источник 15 питания и измерительный усилитель 16.

Управляемые источники 17 и 18 тока включены параллельно на нагрузку 11. Пневмоклапаны 19 и 20 служат для поджима датчика 4 к твэлу 3 и его отведения. Они управляются через мощные релейные ключи 21 и 22.

Все узлы блока 6 измерений находятся под управлением ПЭВМ 8 через интерфейсную плату 7.

При осуществлении способа с помощью нагревателя 11 создают кратковременное тепловое возмущение участка оболочки твэла 3, при этом образуется ламинарное конвективное течение газа в твэле. Вертикальный перепад температуры регистрируют в виде функции времени (фиг.4). Площадь под регистрируемой кривой является первым параметром, по которому в дальнейшем определяют давление и состав бинарной газовой смеси в твэле.

Второй параметр спектральную мощность сигнала горизонтального перепада температуры получают при непрерывном нагреве того же участка оболочки твэла 3 (фиг.5). Мощность нагрева при этом выбирается достаточной для возбуждения турбулентного течения в газе. Полученный сигнал с высокоамплитудной хаотичностью обрабатывают с использованием быстрого преобразования Фурье и получают спектр тепловых шумов (фиг.6).

Зависимости первого и второго параметров от давлений гелия и ксенона получают при градуировке (фиг.9). Зарегистрированному значению площади соответствует первая кривая на поверхности градуировочной зависимости (фиг.9, а), а зарегистрированному значению мощности соответствует вторая кривая (фиг.9,б). Точке пересечения этих кривых соответствует искомое значение давления и состава газа.

При использовании предлагаемого способа в диапазоне 0,1-5,0 МПа погрешность определения давления не превышает 0,1-0,15 МПа.

Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ГАЗА В ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТАХ ЯДЕРНЫХ РЕАКТОРОВ, заключающийся в том, что на участок внешней поверхности оболочки тепловыделяющего элемента воздействуют тепловым импульсом и измеряют перепад температуры на равных расстояниях от места воздействия теплового импульса выше и ниже участка нагрева и по предварительного полученной градуировочной зависимости определяют давление газа в тепловыделяющем элементе, отличающийся тем, что перед воздействием теплового импульса разогревают оболочку в местах измерения температуры до установившегося значения температуры, а также дополнительно производят непрерывный нагрев того же участка оболочки и регистрируют зависимость от времени перепада температуры оболочки справа и слева от нагреваемого участка, а давление определяют по двум параметрам - величине интеграла по времени от сигнала перепада температуры, вызванного воздействия теплового импульса, и величине спектральной мощности сигнала перепада температуры при непрерывном нагреве участка оболочки, при этом градуировочную зависимость двух параметров получают в виде функции от давления и состав бинарной газовой смеси в тепловыделяющем элементе ядерного реактора.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9



 

Похожие патенты:

Изобретение относится к контрольно измерительной технике, в частности к частотным измерителям давления, и предназначено для измерения абсолютного давления

Изобретение относится к контрольно-измерительной технике, а именно к способам измерения давления, и может быть использовано в расходомерах

Изобретение относится к приборостроению и может быть использовано в устройствах или приборах, подверженных механическим воздействиям и измеряющих или обрабатывающих информацию о давлении (или разности давления) исследуемой среды

Изобретение относится к области гидроакустики и может быть использовано в морских условиях для измерения шумоизлучения различных объектов

Изобретение относится к океанографической технике и может быть использовано для измерения параметров ветрового волнения в море

Изобретение относится к области измерительной техники и может быть использовано при конструировании приборов и систем метрологического контроля, в частности, для магистральных газопроводов

Изобретение относится к волоконно-оптическим автоколебательным системам на основе микромеханического резонатора и может быть использовано в системах измерения различных физических величин (температуры, давления, ускорения и др.)

Изобретение относится к электронно-измерительной технике, а именно к устройствам для измерения параметров упругих колебаний в твердых, жидких и газообразных средах в диапазоне частот не выше частоты собственных колебаний пьезополимерной пленки, и может быть использовано в качестве датчика упругих колебаний в различной контрольно-измерительной аппаратуре

Изобретение относится к электронно-измерительной технике, а именно к устройствам для измерения параметров упругих колебаний в твердых, жидких и газообразных средах в диапазоне частот не выше частоты собственных колебаний пьезополимерной пленки, и может быть использовано в качестве датчика упругих колебаний в различной контрольно-измерительной аппаратуре

Изобретение относится к электрическим измерительным устройствам, предназначенным для измерения давления в баллоне, содержащем сжатый газ, и может быть использовано, например, для контроля заполненности баллона газом перед его использованием или при его проверке
Наверх