Узел устройства для магнитной обработки жидкости

 

Изобретение относится к магнитной обработке жидкости. Может использоваться в устройствах для магнитной обработки жидкости во время кипения, а также в устройствах, в которых обработка осуществляется при возвратно-поступательном движении магнитных элементов в сосудах с жидкостью. Сущность изобретения: узел устройства включает кольцевой магнитный сердечник и два диска из немагнитного материала, плотно прилегающих к его торцам. В центре верхнего диска выполнено отверстие, а в магнитном сердечнике имеется один или более каналов для прохода жидкости. На противоположных сторонах каждого канала расположены разноименные полюса магнитов, при этом силовые линии магнитного поля проходят в каналах горизонтально и перпендикулярно направлению потока обрабатываемой жидкости. Эффективность магнитной обработки жидкости может регулироваться за счет изменения числа каналов в магнитном сердечнике, длины или проходного сечения каналов, а также за счет изменения времени обработки. 4 з. п. ф-лы, 6 ил.

Изобретение относится к магнитной обработке жидкости. Может использоваться преимущественно в устройствах для магнитной обработки жидкости при кипячении, а также в устройствах, в которых обработка осуществляется при возвратно-поступательном движении магнитных элементов в сосудах с жидкостью.

В известном устройстве для магнитной обработки жидкости используется узел, состоящий из цилиндрического магнитного сердечника и дисковых полюсных наконечников. Жидкость подвергается обработке в магнитном поле при прохождении в зазоре между дисковыми наконечниками в радиальном направлении. При этом жидкость движется в направлении, перпендикулярном вертикально ориентированным силовым линиям магнитного поля.

Недостатком такого узла является уменьшение напряженности магнитного поля от центра к периферии дисковых наконечников, и как следствие, понижение эффективности магнитной обработки жидкости на периферийных участках и в целом.

В соответствии с настоящим изобретением эффективность магнитной обработки может быть заметно повышена за счет изменения расположения полюсов магнитного сердечника.

На фиг. 1 изображен узел устройства для магнитной обработки жидкости. Конструктивно узел совпадает с устройством, взятым за прототип, отличаясь только расположением магнитных полюсов и материалом дисков; на фиг.2 сердечник с каналом, проходящим вдоль его радиуса; на фиг. 3 канал ориентирован в направлении, не проходящем через ось сердечника; на фиг. 4 сердечник, состоящий из нескольких концентрических колец; на фиг. 5 узел в составе устройства для магнитной обработки жидкости при кипячении; на фиг. 6 узел в составе устройства для обработки жидкости при возвратно-поступательном движении магнитных элементов.

Узел устройства для магнитной обработки жидкости (фиг.1) включает магнитный сердечник 1 кольцевой формы и прилегающие к его торцам нижний диск 2 и верхний диск 3 с отверстием 4 в центре. Диски 2 и 3 в отличие от прототипа выполнены из немагнитного материала и служат только для ограничения и направления потока жидкости во время работы устройства. Магнитные сердечники (фиг. 2-4) могут быть выполнены различной формы, но обязательно имеют не менее одного канала 5 для прохода жидкости. Канал 5 может проходить вдоль радиуса магнитного сердечника 1 (фиг.2) или может быть ориентирован в направлении, не проходящем через ось магнитного сердечника (фиг.3). Во втором случае несколько увеличивается длина канала и, соответственно, эффективность магнитной обработки жидкости, проходящей по каналу. Если магнитный сердечник 1 состоит из двух или более концентрических колец, оси каналов 5 в каждом кольце магнитного сердечника 1 могут быть сдвинуты относительно осей каналов в каждом соседнем кольце (фиг.4). Магнитный сердечник 1 или отдельные его сегменты намагничены таким образом, что разноименные полюса магнита находятся на противоположных стенках каждого канала 5, а силовые линии магнитного поля проходят в каналах горизонтально и перпендикулярно направлению потока обрабатываемой жидкости. В случае, если обрабатываемая жидкость содержит твердые частицы и/или является агрессивной, т.е. возможно абразивное и/или коррозионное воздействие на стенки каналов 5, полюсные зоны 6 магнитов могут быть выполнены съемными для замены (фиг.2).

Пропорции в изображении элементов на чертежах изменены для большей наглядности.

Узел устройства работает следующим образом.

В устройствах для магнитной обработки жидкости при кипячении (фиг.5) описываемый узел размещается под раструбом 7 циркуляционной трубки 8 и при работе остается неподвижным. В возвратно-поступательном движении магнитных элементов (фиг. 6) узел перемещается вдоль оси сосуда 9 и с помощью, например, прикрепленной к нему центральной стойки 10. В обоих случаях жидкость будет проходить в каналах 5 между нижним и верхним дисками 2 и 3 в радиальном или близком к радиальному направлении перпендикулярно силовым линиям магнитного поля.

В первом случае поток жидкости, частично вместе с паром, будет двигаться от периферии к центру и выходить вверх через отверстие 4, а затем направляться с помощью раструба 7 в циркуляционную трубку 8.

Во втором случае направление движения жидкости будет периодически меняться на противоположное.

Эффективность магнитной обработки жидкости может регулироваться за счет изменения числа каналов в магнитном сердечнике, длины или проходного сечения каналов, а также за счет изменения времени обработки.

Формула изобретения

1. УЗЕЛ УСТРОЙСТВА ДЛЯ МАГНИТНОЙ ОБРАБОТКИ ЖИДКОСТИ, включающий магнитный сердечник в форме кольца и два диска, прилегающих к торцам магнитного сердечника, причем по крайней мере верхний диск имеет отверстие в центре, отличающийся тем, что сердечник имеет по крайней мере один боковой канал для прохода жидкости, разноименные полюса магнита находятся на противоположных стенках каждого канала, а диски выполнены из немагнитного материала.

2. Узел по п. 1, отличающийся тем, что каналы ориентированы в направлениях, не проходящих через ось магнитного сердечника.

3. Узел по п. 1 или 2, отличающийся тем, что магнитный сердечник состоит из двух или более концентрических колец.

4. Узел по п. 3, отличающийся тем, что оси каналов в каждом кольце магнитного сердечника сдвинуты относительно осей каналов в каждом соседнем кольце.

5. Узел по п. 1, отличающийся тем, что полюсные зоны магнитов выполнены съемными.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к водоочистке и может быть использовано при очистке сточных, промывных и других вод от ионов металлов

Изобретение относится к устройствам для обработки жидкостей и может быть использовано для очистки коммунально-бытовых и промышленных сточных вод

Изобретение относится к обессоливанию природных и сточных вод обратным осмосом

Изобретение относится к очистке природных и сточных вод и может быть использовано при очистке рек, каналов, производственных стоков путем магнитной обработки воды

Изобретение относится к очистке сточных вод, в частности к конструкциям аппаратов для электрохимической очистки загрязненных жидкостей

Изобретение относится к мембранному разделению водных растворов, содержащих поверхностно-активные вещества (ПАВ) и красители и может быть использовано на предприятиях легкой, пищевой и химической промышленности

Изобретение относится к ионообменной очистке растворов и сточных вод от никеля и меди

Изобретение относится к способам защиты окружающей среды от загрязнения и может быть использовано при очистке шламов, содержащие ядовитые красящие вещества, при дробеструйной обработке поверхностей корпуса судов на судоремонтных заводах

Изобретение относится к получению питьевой воды и может быть использовано для очистки и кондиционирования водопроводной, природных и сточных вод

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх