Способ получения гранулированного триполифосфата натрия

 

Изобретение относится к получению гранулированных неорганческих материалов, которые могут быть использованы в качестве компонентов синтетических моющих средств. Сущность изобретения заключается в том, что после распылительной сушки смеси ортофосфатов и ее термообработки проводят увлажнение порошка водой в горизонтальном турбулентном потоке жидкости и частиц плотностью 590-900 кг/м3 со степенью турбулентности Reц= 3700-6400 при соотношении жидкости и порошка (0,16-0,22): 1 и температуре 1-30°С. В результате повышается прочность гранул и увеличивается производительность процесса. 1 табл.

Изобретение относится к способу получения гранулированного триполифосфата натрия (ТПФН), используемого в качестве компонента синтетических моющих средств.

Известен способ получения гранулированного частично или полностью гидратированного ТПФН, включающий распыли- тельную сушку смеси ортофосфатов натрия, ее термообработку при 300-600оС и последующее увлажнение на вращающейся тарелке с помощью раствора полифосфата аммония, подаваемого через два сопла, или увлажнение водой смеси безводного триполифосфата натрия и полифосфата аммония. Образующийся гранулят имеет размеры 0,8->1,6 мм и прочность 2-9 МПа [1] Этот способ не содержит дополнительных стадий сушки и прокаливания. Количество продукта, получаемого в течение 1 ч, равно 25-50 кг.

Недостатками способа являются низкая прочность конечного продукта, невысокая производительность процесса и необходимость использования полифосфата аммония, который расходуется в количестве примерно 60 кг на 1 т ТПФН. Дополнительных затрат и оборудования требует и стадия смешения полифосфата аммония с триполифосфатом натрия. Кроме того по описанному способу получаются гранулы большего размера (0,8->1,6 мм) по сравнению с гранулами в моющих средствах (0,2-1,0 мм).

Наиболее близким к предлагаемому является способ получения гранулированного ТПФН путем распылительной сушки смеси ортофосфатов, ее термообработки при 350-600оС и последующего увлажнения тонкодисперсного порошка триполифосфата в падающем слое частиц плотностью 2-20 кг/м3 в течение 0,2-0,4 с при 50-70оС насыщенным водяным паром, расход которого равен 8-12 мас. от количества гранулируемого триполифосфата натрия с последующим отверждением частиц при температуре не выше 30оС в течение 0,5-1,0 мин. Получают рыхлые пористые гранулы неправильной формы преимущественного размера 0,2-1 мм с прочностью на истирание 56,6% (определено с помощью струйной мельницы-эрлифта и соответствует 2-4 МПа статической прочности, определенной по ГОСТ 21560.2-82 [2] Количество продукта, получаемого в течение 1 ч, равно 50 кг.

Недостатками этого способа являются невысокая прочность гранул, небольшая производительность процесса, а также сложность его осуществления вследствие необходимости проведения дополнительной стадии отверждения частиц.

Цель данного изобретения повышение прочности и увеличение производительности процесса.

Цель достигается тем, что в способе получения гранулированного триполифосфата натрия, включающем распылительную сушку смеси ортофосфатов натрия и ее термообработку с последующим увлажнением порошкообразного триполифосфата натрия, увлажнение порошка проводят водой в горизонтальном потоке жидкости и частиц плотностью 590-900 кг/м3со степенью турбулентности Rец=3700-6400 при соотношении жидкости и порошка (0,16-0,22):1 и температуре 1-30оС.

Существенными отличительными признаками предлагаемого способа является увлажнение тонкодисперсного порошка триполифосфата натрия водой в горизонтальном турбулентном потоке жидкости и частиц плотностью 590-900 кг/м3 со степенью турбулентности Rец= 3700-6400 при соотношении жидкости и порошка (0,16-0,22):1 и температуре 1-30оС.

Предлагаемый способ осуществляют следующим образом.

Поток частиц безводного технического триполифосфата натрия, полученного распылительной сушкой смеси ортофосфатов натрия (2Nа2НРО4+NaН2РО4) и термообработкой ее при 350-600оС, плотностью 590-900 кг/м3, до 90% которого составляют частицы размером 0,1 мм и менее, пропускают через горизонтальную установку, в которой он увлажняется и подвергается воздействию перемешивающих вращающихся элементов, придающих ему спиралевидно-вихревой или турбулентный характер движения, при этом образуется близкая к гомогенной трехфазная система твердое вещество-жидкость-воздух. Увлажнение проводят распылением воды на порошок при их соотношении 0,16-0,22):1, при этом на сухих частицах порошка создается тонкий слой гидратных оболочек, который осуществляет роль мостиков и способствует агрегации частиц и их последующему уплотнению в результате вихревого характера движения в турбулентном потоке. Если количество влаги, подаваемой на грануляцию, превышает необходимое, то вместо образования гидратных оболочек происходит полное растворение частиц, в результате чего теряется необходимая пористость гранул или образуются гранулы большего, чем это необходимо, размера. Степень турбулентности поддерживается в пределах 3700-6400 для равномерного распределения влаги, которое при неблагоприятных условиях может осложняться локальным растворением частиц. Температура проведения процесса 1-30оС.

Проведение процесса во всей совокупности признаков позволяет получить окатанные гранулы триполифосфата с размерами 0,2-0,3 мм, состав которых не меняется в процессе увлажнения, т.е. благодаря высокой скорости грануляции анион триполифосфата не подвергается гидролизу.

Осуществление способа при таких параметрах позволяет увеличивать количество конечного продукта в единицу времени по сравнению с известными способами, т. е. увеличить производительность процесса. Кроме того совокупность признаков позволяет повысить прочность гранул до 15-20 МПа, что в 5-10 раз выше, чем у прототипа (2-4 МПа), и упростить процесс за счет исключения операции отверждения.

П р и м е р 1. 2,1 т тонкодисперсного порошка безводного триполифосфата натрия (90% которого составляют частицы 0,1 мм и менее), полученного распылительной сушкой смеси ортофосфатов натрия (2Nа2НРО4+NaН2РО4) и кальцинацией при 350-600оС, с помощью бункера-дозатора подают в горизонтальный аппарат с размерами 2,0х5,0 м с вращающимися элементами и одновременно увлажняют распылением 400 кг воды образующийся турбулентный поток плотностью 750 кг/м3 со степенью турбулентности Rец=5700 при 22оС. Массовое соотношение жидкости и порошка составляет 0,19:1. Получают гранулы, прочность которых равна 16 МПа, время растворения 9 мин. Выход гранул требуемого размера 0,2-1,0 мм составляет 86% Общее количество получаемого в течение 1 ч продукта составляет 4,2 т.

Плотность потока рассчитывали на основании порозности после экспериментального определения объема и массы твердых частиц слоя. Объем слоя рассчитывали на основании его толщины, которую определяли введением в слой стержня, покрытого клейким составом. При обтекании стержня движущимся слоем на нем налипала полоса частиц, ширину которой принимали за толщину слоя. Массу определяли взвешиванием частиц, оставшихся в аппарате после отсечки, т.е. прекращения подачи и выгрузки материала.

Степень турбулентности Rец рассчитывали по формуле Reц , где плотность слоя, кг/м3; коэффициент динамической вязкости с или c; n частота вращения единичного объема слоя материала в аппарате, с-1; dа диаметр аппарата, Reц (безразмерная величина) Прочность гранул (предельную силу, необходимую для разрушения гранул испытуемой фракции при одноосном сжатии между двумя параллельными плоскостями) определяли по ГОСТ 21560.2-82 (удобрения минеральные, методы испытаний) на приборе ИПГ-1 (диапазон измеряемых давлений 0,1-10 МПа или 1-100 кгс/см2, точность 0,7 МПа).

Выход гранул определяли путем рассева пробы на ситах по ГОСТ 21560.2-82 и определения массовой доли гранул нужной фракции (0,2-1,0 мм) по отношению ко всей испытуемой пробе вещества.

Производительность процесса оценивали по количеству получаемого конечного продукта в единицу времени.

Для определения скорости растворения 5 г исследуемого образца заливали 10 мл дистиллированной воды, термостатированной при 25оС в химическом стакане с магнитной мешалкой, вращающейся cо скоростью 60-70 об/мин. Фиксировали время, необходимое для полного растворения образца.

Остальные примеры осуществления способа с учетом всех отличительных признаков изобретения, данные о влиянии предлагаемых условий грануляции на свойства гранул и данные по получению продукта согласно способу-прототипу приведены в таблице.

Из таблицы следует, что оптимальными условиями осуществления способа с целью повышения прочности гранул и увеличения производительности процесса является увлажнение водой в горизонтальном турбулентном потоке плотностью 590-900 кг/м3 со степенью турбулентности Rец=3700-6400 при соотношении жидкости и порошка 0,16-0,22):1 и температуре 1-30оС.

Снижение плотности турбулентного потока до 580 кг/м3 (ниже 590 кг/м3) приводит к снижению механической прочности гранул (4 МПа) вследствие отсутствия достаточного количества контактов между увлажненными частицами из-за низкой плотности потока мелких частиц и уменьшает количество получаемого продукта и выход гранул нужного размера. При увеличении плотности потока больше 900 кг/м3 (до 910 кг/м3) наблюдается образование непрочных гранул (6 МПа) с большим количеством мелких частиц вследствие плохого распределения влаги по объему, которое усложняет контакты между частицами и приводит к уменьшению выхода нужной фракции.

При степени турбулентности потока менее 3700 (3600) снижается прочность гранул (до 6 МПа) в результате уменьшения уплотняющего влияния вихревого потока, а также плохого распределения влаги по объему. При повышении степени турбулентности более 6400 происходит существенное разрушение частиц и выход нужной фракции снижается до 55% При соотношении жидкости и порошка 0,15;1, т.е. меньшем, чем оптимальное, снижается прочность (до 5 МПа) и выход гранул (до 66%) из-за отсутствия агломерации между частицами, которое вызвано недостаточным увлажнением и связанным с ним отсутствием гидратных оболочек на частицах. При соотношении более 0,22:1 (при 0,23:1) избыток жидкости приводит к локальному растворению части гранулируемого материала, что ведет к образованию слишком крупных частиц и снижает количество получаемого продукта и выход гранул нужного размера.

Верхний предел температурного интервала проведения грануляции (30оС) является необходимым и достаточным в связи с тем, что повышение температуры более 30оС требует дополнительных энергетических затрат, качество конечного продукта при этом не улучшается. При более низких, чем 1оС, температурах происходит замерзание опрыскивающей жидкости.

Технико-экономическими преимуществами предлагаемого способа является повышение механической прочности гранул до 15-20 МПа, что в 5-10 раз выше, чем у прототипа, и увеличение производительности процесса в 8 раз. Получаемый в горизонтальном турбулентном потоке гранулированный ТПФН является сыпучим, неслеживающимся продуктом, который совершенно не комкуется при растворении в воде, в отличие от порошкообразного ТПФН.

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТРИПОЛИФОСФАТА НАТРИЯ, включающий распылительную сушку смеси ортофосфатов натрия, ее термообработку при 350 - 600oС и последующее увлажнение полученного порошка триполифосфата натрия, отличающийся тем, что увлажнение проводят в горизонтальном турбулентном потоке воды и порошка при их массовом соотношении (0,16 0,22) 1, плотности потока 590 900 кг/м3 и температуре 1 30oС со степенью турбулентности потока Reц 3700 6400.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к способам получения триполифосфата калия, который широко используется при приготовлении электролита латунирования в производстве фольги, а также как основа для получения жидких и чистящих моющих средств

Изобретение относится к способу получения триполифосфата натрия, используе2 мого в производстве пищевых продуктов, моющих средств, отбеливающих препаратов и реагентов для уменьшения жесткости воды, Цель изобретения - снижение примесей мышьяка и свинца за счет повышения эффективности процесса фильтрации

Изобретение относится к промышленности минеральных удобрений

Изобретение относится к способам получения конденсированных фосфатов металлов, в частности смешанных полифосфатов лития и лантаноидов общей формулы LI LN (PO<SB POS="POST">3</SB>)<SB POS="POST">4</SB>

Изобретение относится к технологии получения триполифосфата натрия, используемого в производстве синтетических моющих средств

Изобретение относится к способу получения триполифосфатов натрия и калия и может быть использовано при получении реактивных солей и моющих средств

Изобретение относится к способу получения триполифосфата натрия, используемого в производстве моющих средств, отбеливающих препаратов и препаратов для уменьшения жесткости воды

Изобретение относится к способам получения конденсированных фосфатов, а именно к способам получения триполифосфата натрия из ортофосфатов

Изобретение относится к способам получения неорганических солей фосфора , в частности триполифосфата натрия (NajPjOio), который широко используется для приготовления моющих, отбеливающих средств и как реагент для обработки воды, применяемой для питания котлов теплоэлектростанций

Изобретение относится к области технологии неорганических веществ, а именно к технике получения из экстракционной фосфорной кислоты и соды триполифосфата натрия, применяемого для производства синтетических моющих средств, в процессах флотации, нефтедобычи

Изобретение относится к области химической технологии, а именно к способам получения используемого, например, в качестве компонента синтетических моющих средств гексагидрата триполифосфата натрия, сырьем для производства которого служат фосфорная кислота и сода

Изобретение относится к способу получения триполифосфата натрия, используемого в производстве моющих средств и др

Изобретение относится к технике получения триполифосфата натрия, используемого в химической, текстильной, бытовой и пищевой отраслях промышленности

Изобретение относится к составам, способам получения и аппаратурному оформлению производства комплексообразователя на основе гидратируемого триполифосфата натрия, имеющего многокомпонентно-гомогенную структуру и используемого преимущественно в качестве активной составляющей высококачественных моющих и чистящих средств, а также для создания пищевых, кормовых и медицинских полифосфатсодержащих препаратов

Изобретение относится к области получения чистых полифосфатов калия и натрия, используемых в пищевой, фармацевтической, химической и текстильной промышленности
Изобретение относится к способам получения фосфорных солей, а именно триполифосфата натрия (ТПФН) из экстракционной фосфорной кислоты (ЭФК)

Изобретение относится к производству фосфорных солей, в частности триполифосфата натрия (ТПФН), используемого в пищевой, бытовой, химической промышленности
Наверх