Способ извлечения благородных металлов из обедненных руд

 

Использование: для выщелачивания золота и серебра из обедненных руд с использованием биореагентов. Сущность способа: исходное минеральное сырье выщелачивают с помощью окислителя и биологической жидкости, содержащей аминокислоты и представляющей собой раствор продуктов жизнедеятельности дрожжей родов Saccharomyces, Kluyveromyces или Pichia. 1 табл.

Изобретение относится к области биометаллургии и касается извлечения золота и серебра из трудно перерабатываемого и обедненного минерального сырья.

Предлагаемый способ применим, прежде всего, для извлечения благородных металлов из бедных, забалансованных и потерянных руд, при освоении частично или полностью отработанных месторождений минералов типа кварцитов и в меньшей степени пригоден для извлечения золота и серебра из сульфидных руд.

Методы извлечения из минерального сырья таких благородных металлов, как золото и серебро условно можно разделить на три группы: методы химические, микробиологические и химико-микробиологические.

Химические методы основаны на окислении нерастворимых соединений благородных металлов, в дальнейшем получение их водорастворимых комплексов, сорбционном или экстракционном их выделении и освобождении целевых продуктов из комплексов.

Наибольшое распространение имеет цианидный метод, заключающийся в том, что руду подвергают обработке энергичными окислителями (перманганат калия, нитрит натрия и др.) в щелочной среде, ионы благородных металлов связывают в водорастворимые цианидные комплексы добавлением цианида натрия, комплексы сорбируют на активированном угле или ионнообменных смолах с последующих выделением целевого продукта из комплекса.

Известен один из вариантов цианидного метода, состоящий в том, что исходное минеральное сырье обрабатывают водным раствором азокрасителя ализарина, затем вводят цианид натрия, перекись бария и окись кальция и после взбалтывания в течение 12 ч добиваются 84-85-ного извлечения золота в раствор.

Недостатки этого способа высокая токсичность цианидов и возникающие экологические проблемы.

Микробиологический метод основан на использовании биологических потенций живых микpооpганизмов для непосредственного растворения благородного металла, вкрапленного в минералы.

Известен способ выделения серебра из сульфидных руд, заключающийся в том, что руду инокулировали суспензией клеток тиобактерий в питательной среде и подвергали периодическому или непрерывному выщелачиванию. Использовались разные составы питательных сред. Размер частиц руды составлял 15+60 меш.

Максимальное количество выщелачиваемого серебра составляло 23% спустя 1 неделю после начала процесса и около 75% через 49 дней.

Недостатки микробиологических методов состоят в длительности процессов, в том, что микробные культуры могут терять металлорастворяющую активность, в том, что в нестерильных условиях активные культуры могут вытесняться посторонней микрофлорой.

Химико-микробиологические методы сочетают приемы химического и микробиологического методов.

Известен метод извлечения благородных металлов из упорных сульфидных руд, заключающийся в том, что руду предварительно подвергают микробиологическому выщелачиванию, а затем металлы добывают цианидным способом.

В некоторых случаях после бактериального вскрытия извлечение золота приемами флотации достигает 90-98% а из остатков бактериального выщелачивания золотосодержащих концентратов цианированием извлекается 84-90% золото.

Известный метод несмотря на высокие экономические характеристики сохраняет существенные недостатки химических способов выделения благородных металлов из руд.

Более близким к предложенному по технической сущности можно признать метод выделения благородных металлов из руд, предусматривающий использование продуктов микробиологической деятельности. Один из его вариантов состоит в том, что минеральное сырье типа полевых шпатов или кварцитов подвергают выщелачиванию культуральной жидкостью Bacillus mesentericus niger 129 в присутствии окислителя перекиси натрия с последующим извлечением золотосодержащего комплекса с помощью активированного угля или ионообменных смол и освобождением целевого продукта из комплекса. Культуральная жидкость должна содержать не менее 5 г/л золоторастворяющих аминокислот, 4% белка. Процесс выщелачивания должен проводиться в щелочной среде с рН 9,0-11,0, а минеральное сырье желательно иметь в мелкодисперсном виде. Использованная бактериальная культура была выделена из золотоносного месторождения и для получения культуральной жидкости специально нарабатывалась. В качестве наиболее активных золоторастворяющих аминокислот упоминаются глицин, аспарагин, аспарагиновая кислота, аланин, фенилаланин, гистидин, глутаминовая кислота, метионин, серин, треонин. Максимальное извлечение золота в раствор достигало 60-80% за 10 сут перколяционного выщелачивания руды с размером зерен 0,2 мм. Показатели выделачивания зависят от характера рудной минерализации, величины частиц золота, содержания аминокислот в биологической жидкости и от длительности выщелачивания. При использовании растворов индивидуальных аминокислот наиболее высокие концентрации золота в растворах установлены только в длительных опытах от 60 сут и более.

Недостатки этого способа длительность процесса, его отработанность только для лабораторных условий, а также необходимость специального выращивания микроорганизмов для получения культуральной жидкости.

Наиболее близкий к предложенному способ, принятый за прототип, состоит в том, что бедное по содержанию золота исходное сырье обрабатывают в присутствии окислителя щелочным гидролизатом биомассы дрожжей Aspergillus niger 119, являющийся отходом производства лимонной кислоты. Из кварц-карбонатных руд было извлечено 72,1% золота после трех стадий обработки по 72 ч каждая, а из песчано-глинистых руд, содержащих тонкодисперсное золото крупностью не более 5 мкм 72,7% золота после 16 сут перколяции.

При ряде достоинств способ-прототип также не лишен недостатков, главный из которых длительность процесса.

Цель изобретения ускорение процесса извлечения золота из минерального сырья при использовании доступных средств, в частности отходов других производств.

Эта цель была достигнута в результате того, что для извлечения золота и серебра были использованы продукты жизнедеятельности дрожжей родов Saccharomeces, Kluyveromyces.Pichia биологические жидкости, содержащие аминокислоты.

Сущность предложенного способа состоит в том, что исходное металлосодержащее минеральное сырье тонко измельчают, подвергают его воздействию окислителей и биологической жидкости, образовавшийся водорастворимый комплекс золота улавливают и выделяют из него целевой продукт. В качестве минерального исходного сырья предпочтительно использовать кварцитные руды. Приемлемый размер частиц минерала порядка 0,02-0,2 мм, а содержание золота в руде, обеспечивающее экономическую целесообразность процесса в пределах 0,8-1,0 г/т.

Как биологические жидкости могут быть использованы содержащие аминокислоты фракции разрушенных различным образом клеток дрожжей родов Saccharomeces, Kluyveromyces, Pichia осветленные и неосветленные, фракционированные и нефракционированные гидролизаты дрожжей, культуральные жидкости, фильтраты культуральной жидкости или подобные материалы.

Разрушение обычно осуществляют механическими средствами или гидролизом клеток известными приемами. Наиболее удобно использовать биологические жидкости, которые являются отходами некоторых биотехнологических производств, предусматривающих разрушение дрожжевых клеток и последующее выделение микробных метаболитов, таких как ферменты. В частности, удобно использовать отход производства фермента супероксиддисмутазы или отходы производства цитохрома С из дрожжей Pichia membranaefaciens.

При соотношении концентраций аминокислот и ионов золота в растворе 10:1 50: 1 и рН 9-11 образуются достаточно стабильные комплексы с аминокислотными лигандами, поэтому упомянутые параметры процесса желательно обеспечивать.

Как окислителя целесообразно использовать перманганат калия, нитрит натрия, гипохлорид натрия и др. Концентрация окислителя должна быть соизмеримой с концентрацией аминокислот.

Процесс выщелачивания длится обычно 10-24 ч. При этом в раствор переходит около 80% золота и примерно 70% серебра. Выщелачивание лучше проводить при температуре порядка 50оС и в присутствии хлористого натрия как высаливающего агента в концентрации в среднем 10 г/л.

Выщелачивание можно осуществлять как в статических условиях, например в реакторах с механическим или пневматическим перемешиванием или в кипящем слое, так и в динамических условиях, в частности в перколяционных колоннах.

Одним из вариантов техники улавливания водорастворимых комплекса золота и серебра, пригодных для промышленного освоения, является их сорбция на угле, который можно вводить непосредственно в пульпу. Сорбционная емкость угля составляет 5,8 кг благородного металла на 1 т угля. В качестве сорбента могут быть использованы и ионообменные смолы.

Было установлено, что продукты жизнедеятельности дрожжевых клеток вышеупомянутых родов содержат значительные количества золоторастворяющих аминокислот, а возможно, и другие соединения, способствующие растворению золота.

В качестве примера в приводимой далее таблице указан аминокислотный состав осветленной фракции разрушенных клеток или двух видов дрожжей.

Исходя из полученных данных, в 1 л биологических жидкостей, используемых при выщелачивании, содержание аминокислот составляет в среднем 34,0-37,6 г/л, а среднее содержание белка 35,3 г/л.

Не представляется очевидной высокая эффективность биологических жидкостей на их основе в процессе выщелачивания благородных металлов из кварцитных руд и приемлемость этих биологических жидкостей для использования в промышленных масштабах.

Предлагаемый способ был опробован при выщелачивании бедных по содержанию золота и серебра руд промышленного месторождение Петелово в Болгарии и показана его технологическая и экономическая эффективность.

П р и м е р 1. Выщелачиванию подвергалась кварцитная руда месторождения Петелево в Болгарии. Минеральный состав руды следующий, Двуокись кремния 75,0 Окись алюминия 10,0 Окись кальция 1,5 Окись магния 1,7 Окись железа закисного 8,5 Сера 1,5 Золото 1,0 Серебро 2,0 Содержание золота в руде составляло 0,96 г/т, а серебра 2,8 г/т.

Руда была тонко измельчена, промыта водой, и были отброшены частицы, большие по размеру 5 мм. Мелкая фракция была классифицирована по размеру и на выщелачивание направили фракцию с размером частиц менее 0,25 мм, которую дополнительно подвергали помолу и довели размер частиц до 0,044 мм. 200 г тонкодисперсной породы поместили в реактор с механическим перемешиванием, заполненный 1 л выщелачиваемой среды. Выщелачивающая среда содержала 5 г (в расчете на сухой вес) осветленного гидролизата дрожжей Pichia memranaefaciens как биологической жидкости, 5 г перманганата калия как окислителя и 10 г хлористого натрия, как высаливающего агента. В выщелачивающей среде содержалось 36,4 г/л аминокислот и 2,5 г/л белка. Значение рН суспензии было доведено до 10,0. Выщелачивание проводили при температуре 21оС, интенсивности перемешивания 600 об. мешалки в минуту, скорости продувания воздуха 10 объемов воздуха на 1 объем раствора в час в течение 24 ч.

В водный раствор было извлечено 72% золота и 59% серебра.

При цианировании этой руды было извлечено 71,8% золота и 58,1% серебра.

П р и м е р 2. Выщелачиванию подвергалась золотоносная порода, состоящая преимущественно из гидроокислов железа. Содержание золота составляло 1,4 г/т породы, а серебра 4,4 г/т. Выщелачивание проводили в условиях, описанных в примере 1.

Было извлечено 82% золота и 63% серебра.

П р и м е р 3. Выщелачиванию подвергалась кварцитная порода, описанная в примере 1. Процесс осуществляли в реакторе с механическим перемешиванием при плотности суспензии 30% Выщелачивающий раствор содержал 5 г/л (в расчете на сухой вес) неосветленного гидролизата дрожжей Kluyveromyces fragilis как биологической жидкости и 5 г/л нитрита натрия как окислителя. В выщелачиваемой среде содержалось 34,0 г/л аминокислот 3,2 г/л белка. Значение рН суспензии было доведено до 10,5. После 12 ч выщелачивания при 23оС было извлечено 44% золота и 32% серебра, а после 24 ч соответственно 71 и 57% П р и м е р 4. Выщелачиванию подвергалась руда, описанная в примере 2. Процесс осуществлялся в условиях, описанных в примере 1, но в качестве биологической жидкости использовали отход производства ферментного препарата супероксиддисмутазы. Этот отход представлял собой суммарную фракцию разрушенных дрожжевых клеток Saccharomyces lactis.

При получении супероксиддисмутазы дрожжевые клетки разрушают, выделяют микросомную фракцию и извлекают из нее фермент. Поэтому отходом производства фермента и одновременно биологической жидкостью служили клеточные фракции, получаемые при выделении микросом, и остатки фракций после извлечения фермента.

Биологическая жидкость вносилась в выщелачивающую среду в конечной концентрации, соответствующей содержанию 5 г/л гидролизата дрожжей в расчете на сухой вес. Конечная концентрация аминокислот в выщелачивающей среде составляла 35,3 г/л, а белка 7,9 г/л.

После 24 ч выщелачивания было извлечено 87% золота и 74% серебра.

П р и м е р 5. Выщелачиванию подвергали кварцитную руду, описанную в примере 1. В качестве биологической жидкости использовали культуральную жидкость Saccharomyces lactis. Измельченную до размеров 0,25 мм руду помещали в реактор, заливали биологической жидкостью и вносили гипохлорит натрия как окислитель. Содержание аминокислот в биологической жидкости (культуральной жидкости) составляло 6,3 г/л, конечная концентрация окислителя равнялась 6,5 г/л, рН доводился до значения 10,7. После 24 ч выщелачивания при температуре 50оС содержание золота составило 49,1% и серебра 37,0% от содержания в руде. В пульпу было внесено 1 г/л угля и комплекс солей золота и серебра был извлечен из раствора сорбционным методом. Было выделено 37% золота и 34,0% серебра от количества, содержащегося в руде, и 88,3% и 90,1% от количества, содержащего в растворе.

П р и м е р 6. Выщелачиванию подвергалась кварцитная руда, описанная в примере 1. После измельчения до размеров частиц около 10 мм руда была загружена в перколяционную колонну высотой 2300 мм и внутренним диаметром 105 мм. Всего было загружено 30 кг измельченной руды. В колонну со скоростью 50 л/т породы за 24 ч подавался выщелачивающий раствор, состоящий из фильтрата культуральной жидкости Pichia memranaefaciens с концентрацией аминокислот 5,5 г/л и раствора перманганата калия как окислителя с концентрацией 5 г/л.

После выщелачивания в течение 90 дней при температуре 27оС выделено 68% золота и 55% серебра.

Как видно из приведенных примеров, все использованные биологические жидкости оказались эффективными для выщелачивания золота и серебра и за сутки выщелачивания достигалась высокая степень извлечения благородных металлов. Значительное увеличение размера частиц выщелачиваемого минерала против обычно принятой ступени его дисперсности, как видно из последнего примера, значительно удлиняет процесс выщелачивания.

Формула изобретения

СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ОБЕДНЕННЫХ РУД, включающий предварительную подготовку минерального сырья, его выщелачивание окислителем и биологической жидкостью на основе продуктов жизнедеятельности дрожжей, содержащей аминокислоты, с последующим выделением благородных металлов из полученного раствора, отличающийся тем, что, с целью сокращения длительности процесса, в качестве биологической жидкости используют раствор продуктов жизнедеятельности дрожжей родов Saccharomyces, Kluyveromyces или Pichia.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к цветной металлургии и может быть использовано в области кучного, подземного, чанового выщелачиваний забалансового и труднообогатимого полиметаллического сырья
Изобретение относится к гидрометаллургии и процессам обогащения ценных металлов и редкоземельных элементов, находящихся в растворе, и может найти применение для деионизации растворов, обессоливания воды и концентрирования веществ, при охлаждении раствора

Изобретение относится к способам выделения драгоценных металлов и ионообменным смолам для их выделения

Изобретение относится к выделению золота из золотосодержащих материалов, в частности из золотосодержащих руд, концентратов, анодных шламов и остатков, содержащих лом, материалов после обжига, предварительной обработкой бактериями (бактериального выщелачивания), выщелачивания под давлением или после обработки другими методами, направленными на выделение золота из его основы

Изобретение относится к гидрометаллургии цветных и редких металлов, в частности к ионообменным процессам

Изобретение относится к цветной металлургии и может быть использовано в области кучного, подземного и чанового выщелачивания забалансового и труднообогатимого полиметаллического сырья
Изобретение относится к гидрометаллургии цветных металлов, а именно к способам десорбции никеля с сорбента и может быть использовано в гальванотехнике, для концентрирования растворов никеля, при решении экологических задач
Изобретение относится к гидрометаллургии цветных металлов, а именно, к способам утилизации никеля и может быть использовано в производстве никеля, в гальванотехнике, при решении экологических задач, в частности для извлечения никеля в виде соли из сточных вод, сорбентов, других отходов
Изобретение относится к переработке бадделеита с получением диоксида циркония повышенной чистоты, позволяющей использовать его в производстве оптических материалов, подложек интегральных схем, спецкерамики, пьезокерамики

Изобретение относится к способу получения металлического технеция из промышленных концентратов пертехнетата калия, включающему растворение навесок пертехнетата калия в воде, ионообменную очистку раствора на катионите в водородной форме с получением фильтрата -технециевой кислоты, нейтрализацию технециевой кислоты раствором аммиака, упаривание раствора, осаждение пертехнетата аммония и восстановление его до металла

Изобретение относится к гидрометаллургическому способу превращения сульфидов меди и/или цинка, содержащихся в различных медьсодержащих рудах, например, халькопирите, в осадки их соответствующих сульфатов, которые можно затем легко извлечь

Изобретение относится к технологии получения катализаторов, и может быть использовано для извлечения меди из растворов, промышленных стоков и сточных вод
Наверх