Космическая солнечная батарея

 

Изобретение относится к энергетическим системам космических объектов, основанным на прямом преобразовании лучистой энергии Солнца в электричество, и может быть использовано при создании экономичных солнечных батарей большой площади. Сущность: в космической солнечной батарее, содержащей несущий каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым, на внутренней поверхности размещено покрытие из материалов с работой выхода, меньшей работы выхода материала электрода, причем величина зазора не превышает длины свободного пробега фотоэлектронов. 5 ил.

Изобретение относится к энергетическим системам космических объектов, основанным на прямом преобразовании лучистой энергии Солнца в электричество, и может быть использовано при создании космических солнечных батарей (СБ) большой площади.

Известны солнечные батареи, содержащие каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым [1] Солнечные батареи на основе полупроводниковых структур различного типа обладают достаточно высоким КПД преобразования солнечной энергии.

Недостатками известных СБ, основанных на внутреннем фотоэффекте, являются сложность структуры ФЭП с использованием в ней дефицитных материалов, например арсенида галлия; принципиальная ограниченность снизу толщины ФЭП ввиду многослойной, особенно варизонной, структуры преобразователя с применением подложек,различных оптических и защитных покрытий и вследствие этого относительно большая масса ФЭП, превышающая массу каркаса СБ, выполненного из высокопрочных материалов; чувствительность к воздействию космической среды, в частности к корпускулярным излучениям, что вызывает быструю деградацию рабочих характеристик,снижающую ресурс. В итоге данные недостатки приводят к высокой стоимости электроэнергии, вырабатываемой подобными СБ.

Наиболее близкой к предлагаемому техническому решению является выбранная в качестве прототипа космическая солнечная батарея, содержащая несущий каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым [2] В качестве токогенерирующей области, образуемой между поверхностями ФЭП, в такой СБ используется гомо- или гетероструктурный слой (слои), на который нанесены электроды (например,оптический и барьерный) и необходимые покрытия. Токосъемные элементы могут быть выполнены в виде тонких проводящих сеток, образованных на поверхностях электродов. Несущий каркас представляет собой ферменную конструкцию из высокопрочных, например углепластиковых, стержневых элементов, на которую натянут ФЭП в виде гибких панелей на сетчатой подложке, закрепленных на каркасе по периферии.

Известная СБ обладает достаточно высоким КПД (практически до 15-20%) и небольшой толщиной гибких панелей СБ (до 100-200 мкм), облегчающей хранение, транспортировку и развертывание СБ в рабочее состояние, например, из рулона.

Недостатками известной СБ являются уже отмеченные выше, типичные для полупроводниковых ФЭП. Эти недостатки, в итоге, выражаются в недостаточно высоких удельных энергетических характеристиках (мощность не превышает 0,2 кВт/кг или 0,16 кВт/м2) и эксплуатационно-технологических характеристиках (значительная за счет ФЭП удельная масса СБ, сложность изготовления, чувствительность к космическим воздействиям и др.), что приводит к повышенной стоимости выработки электроэнергии СБ данного типа.

Целью изобретения является повышение удельной электрической мощности на единицу массы при одновременном повышении стойкости к внешним воздействиям в условиях космического пространства.

Указанной цель достигается тем, что в космической солнечной батарее, содержащей несущий каркас, размещенные на нем фотоэлементы, включающий два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым, на внутренней поверхности одного из электродов размещено покрытие из материала с работой выхода, меньшей работы выхода его материала, причем величина зазора не превышает длины свободного пробега фотоэлектронов.

Сущность изобретения состоит в использовании в конструкции предлагаемой СБ в отличие от традиционных принципа внешнего фотоэффекта, при этом один из проводящих электродов выполняет функции фотокатода, из которого фотоэлектроны могут выбиваться преимущественно либо в направлении падающего света с теневой поверхности пленки, либо во встречном направлении с освещенной поверхности пленки. Фотоэлектроны захватываются другой пленкой с проводящим электродом, выполняющей функции анода.

Поскольку катодная и анодная пленки выполнены из материалов с различной работой выхода электронов, то при воздействии на СБ светового потока между пленками устанавливается некоторая равновесная разность потенциалов (ЭДС порядка 0,6-0,8 В) при условии, что зазор между пленками меньше длины свободного пробега фотоэлектронов в среде зазора (это условие выполняется для космического вакуума при слабом внешнем магнитном поле).

Наиболее существенно то, что проводящие (в том числе металлические) пленки могут быть выполнены гораздо более тонкими, чем полупроводниковые панели СБ порядка 0,5 мкм и менее, так что удельные характеристики предлагаемой СБ оказываются гораздо выше, чем у традиционных СБ.

Кроме того, чувствительность электрофизических характеристик предлагаемой СБ к воздействию факторов космической среды (микрометеоритам, корпускулярным излучениям) является значительно более слабой. Производство пленок и сборка из них СБ на несущем каркасе технологически просты, а условия малой гравитации (невесомости) позволяют создавать легкие СБ весьма большой площади, а следовательно, и мощности.

Преимущественным вариантом исполнения предлагаемой СБ является конструкция, где каждая из пленок с проводящим электродом выполнена в виде изолированных друг от друга полос, причем полосы разных пленок попарно образуют секции фотоэлектрического преобразователя, объединенные в последовательную цепь, в которой каждая тыльная полоса одной из секций преобразователя электрически связана с ориентируемой к Солнцу полосой соседней секции преобразователя, а токосъемные элементы электрически связаны с тыльной полосой на одном конце цепи и с ориентируемой к Солнцу полосой на противоположном конце цепи.

Данная конструкция обладает повышенной технологичностью при построении СБ большой площади. При этом такая конструкция СБ позволяет уменьшить величину тока, протекающего по секциям ФЭП, в расчете на единицу вырабатываемой мощности и тем самым уменьшить толщину пленок, т.е.еще более снизить массу СБ.

В предлагаемой СБ на поверхность пленки с проводящим электродом (фотокатода) нанесено покрытие, уменьшающее величину работы выхода электронов из этой пленки. Это можно осуществить, например, путем оксидирования соответствующей металлической (например,алюминиевой) пленки.

При расположении анода над фотокатодом первый должен быть светопроницаемым,поэтому в данном варианте предлагаемой СБ проводящая пленка, ориентируемая к Солнцу, может быть выполнена перфорированной или сетчатой структуры с минимально возможным затенением катодной пленки.

Сущность изобретения поясняется чертежами, где на фиг.1 показана схема СБ с пленочным фотокатодом, ориентированным к Солнцу; на фиг.2 показана схема СБ с фотокатодом на тыльной поверхности; на фиг.3 показана принципиальная схема СБ с секционированием; на фиг.4 представлена эквивалентная электрическая схема СБ; на фиг.5 представлен вариант конструктивного исполнения СБ.

Как показано на фиг.1, СБ содержит размещенные на несущем диэлектрическом каркасе 1 проводящие пленки, одна из которых служит фотоэмиссионным катодом 2, а другая анодом 3. Пленка 2 расположена вдоль поверхности, ориентируемой к солнечному световому потоку 4. Через токосъемные элементы 5 проводящие пленки могут быть подключены к нагрузке 6.

По другому варианту исполнения СБ, показанному на фиг.2, фотокатод 2 может располагаться вдоль тыльной поверхности, а анодная пленка 3 выполнена светопроницаемой, в частности перфорированной или изготовленной в виде тонкопроволочной сетки.

Материалами электродов могут служить такие металлы, как алюминий, серебро, золото, платина, некоторые сплавы, оксиды щелочных металлов и другие соединения. Различная работа выхода электронов получена для пленок из одного и того же металла за счет оксидирования одной из них или иной поверхностной обработки.

Как показано на фиг.3, катодная и анодная пленки могут быть выполнены в виде изолированных друг от друга полос 7 и 8, причем полосы одного типа (анодные) электрически связаны с полосами другого типа (катодными) по контактным стыкам (швам) 9 так, что здесь ФЭП большой площади представляет собой систему (цепь) последовательно связанных электрогенерирующих секций 10 меньших размеров. Каждая секция увеличивает напряжение, подаваемое на нагрузку 6, в соответствии с эквивалентной электрической схемой цепи, показанной на фиг.4.

Как показано на фиг.5, конструктивно СБ со схемой по фиг.3 может содержать раскладной или сборный каркас с продольными 11 и поперечными 12 несущими элементами. Фрагменты ФЭП 13 в виде состыкованных разнотипных полос натянуты на каркас с пропусканием их через поперечные элементы 12 и закреплением по кромкам на тех же элементах 12, например, с помощью диэлектрических эластичных полотен (сеток, расчалок и т.п.) 14. Жесткость СБ в развернутом состоянии обеспечивается растяжками 15, стягивающими концы продольных стержневых элементов 11, шарнирно сочлененных в их центральных частях.

Функционирование и эксплуатация СБ согласно изобретению осуществляется следующим образом.

В космическое пространство выводится либо вся СБ в сложенном виде, либо ее фрагменты, собираемые затем в единую систему.

Развернутая в рабочее состояние СБ ориентируется на Солнце одной из своих пленочных поверхностей в зависимости от типа фотокатода (см. фиг.1 и 2). Вследствие возникающей при этом электронной эмиссии в зазоре между пленками появляется электрическое поле, создающее разность потенциалов анодной и катодной пленок, равную разности работ выхода этих пленок. При подключении к СБ через токосъемные элементы 5 некоторой нагрузки 6 в цепи ФЭП возникает электрический ток, обеспечивающий питание нагрузки необходимой электроэнергией.

Преимущественная область применения предлагаемых СБ высокие, в частности геостационарные, орбиты, где минимально воздействие атмосферы, магнитного поля планеты и ее гравитационного градиента, что позволяет создавать СБ весьма большой площади, а следовательно, большой мощности.

Технико-экономическая эффективность предлагаемого изобретения может быть подтверждена следующими оценками.

Известно, что КПД энергопреобразования при внешнем фотоэффекте составляет 2-10% Учитывая, что мощность солнечного светового потока у Земли составляет примерно 1,4 кВт/м2, электрическая мощность, вырабатываемая единицей поверхности СБ, составит порядка 0,051400 70 Вт/м2, если принять КПД 5% Этот показатель заметно хуже, чем у серийных кремниевых СБ, где достигается 110 Вт/м2.

Однако толщина пленок может быть доведена до 0,5 мкм. Тогда масса 1 м2 пленки, например, из алюминии составит 110,510-62,7103 1,3510-3 кг 1,35 г для толщины 0,5 мкм. Отсюда удельная электрическая мощность (по массе ФЭП) с учетом использования двух пленок составит Для ФЭП с удельной массой 25 10 г/м2 и каркаса с такой же в среднем удельной массой, т. е. если удельная масса солнечной батареи примерно 20 г/м2, удельная электрическая мощность СБ составит Этот основной показатель предлагаемой СБ почти в 20 раз превышает такой же показатель для перспективных полупроводниковых СБ, достигающий 200 Вт/кг, причем для реализации предлагаемой СБ не требуется дефицитных материалов и сложных технологий, поскольку получение очень тонких проводящих пленок является практически освоенным процессом.

Стоимость создания предлагаемых СБ следует ожидать на уровне стоимости их выведения на орбиту, а поскольку последняя пропорциональна массе СБ, то выигрыш в стоимости выработки электроэнергии с помощью предлагаемых СБ становится достаточно очевидным.

Кроме того, предлагаемые СБ характеризуются более длительным ресурсом и менее жесткими эксплуатационными требованиями.

Предлагаемые СБ допускают возможность их эффективного использования в качестве управляющих (солнечно-парусных) органов ориентации и коррекции орбиты космических объектов.

Перспективы совершенствования предлагаемых СБ связаны в основном с созданием особо тонких проводящих пленок (менее 0,1 мкм) и сверхлегких несущих каркасов. Соответствующие исследования ведутся в области устройств типа "солнечный парус".

Источники информации 1. Колтун М.М. Солнечные элементы. М. Наука, 1987 г. стр.136-154.

2. Грилихес В.А. и др. Солнечная энергия и космические полеты. М. Наука, 1984г. стр.144 (прототип).

Формула изобретения

Космическая солнечная батарея, содержащая несущий каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светонепроницаемым, отличающаяся тем, что, с целью повышения удельной электрической мощности на единицу массы при одновременном повышении стойкости к внешним воздействиям в условиях космического пространства, на внутренней поверхности одного из электродов размещено покрытие из материала с работой выхода, меньшей работы выхода материала электрода, причем величина зазора не превышает длины свободного пробега фотоэлектронов.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к космической технике, конкретно к космическим аппаратам ( КА ), использующим для управления своим движением солнечное световое давление; кроме того, КА может применяться в качестве отражателя для освещения поверхности планеты

Держатель // 2046079
Изобретение относится к машиностроению, преимущественно к держателям различных устройств на космическом аппарате (КА)

Изобретение относится к космической технике, а именно к запорным устройствам развертываемых конструкций, преимущественно солнечных батарей

Изобретение относится к области космической техники и может быть использовано в системах электроснабжения космических аппаратов

Изобретение относится к двигательным системам космических аппаратов (КА) и может быть использовано в устройствах управления движением КА с солнечным парусом для межпланетных перелетов

Изобретение относится к конструкциям солнечных батарей и может быть использовано в системах электроснабжения космических аппаратов

Изобретение относится к космической технике, а более конкретно - к развертываемым в космосе конструкциям солнечных батарей (СБ), антенн, отражателей и др

Изобретение относится к области создания и управления ориентацией спутников, стабилизируемых по трем осям на геостационарной орбите

Держатель // 2121947

Изобретение относится к машиностроению преимущественно для закрепления навесных конструкций, например, панелей солнечных батарей, антенн и т.п., расположенных на спутнике статически определяемой системой связей

Изобретение относится к космической технике и может быть использовано в космических аппаратах, стабилизируемых вращением

Изобретение относится к космической технике и может применяться для удерживания объектов на внешней поверхности ракетно-космических аппаратов

Изобретение относится к болтовым соединениям деталей, воспринимающих поперечные нагрузки, и может применяться в машиностроении, приборостроении и при изготовлении летательных аппаратов

Изобретение относится к космической технике и может быть использовано в космических аппаратах, стабилизируемых вращением

Изобретение относится к ракетно-космической технике и может быть использовано для раскрытия в рабочее состояние фотоэлектрических панелей на космических объектах
Наверх