Электрокоагулятор

 

Использование: в процессах очистки промышленных сточных вод. Сущность изобретения: электрокоагулятор содержит корпус, засыпной электрод, токоподвод, выполненный в виде трехфазного магнитопровода, первичная обмотка которого размещена снаружи корпуса и соединена с источником трехфазного тока, при этом часть магнитопровода расположена внутри корпуса и выполнена изолированной, и решетку. 5 ил.

Изобретение относится к очистке промышленных сточных вод, в частности к индукционным электрокоагуляторам, используемым в качестве одной из ступеней очистки в технологической схеме очистки сточных вод.

Для очистки сточных вод используют различные электрокоагуляторы, например [1] содержащие корпус, набор электродов, источник тока.

Токоподвод в электрокоагулятор выполнен в виде сборных контактов, что усложняет конструкцию электрокоагулятора. Учитывая высокую агрессивность среды в процессе электрокоагуляции, токоподвод ненадежен. Замена и ремонт электродов существенно снижает производительность известных конструкций электрокоагуляторов.

Таким образом, известный тип токоподвода затрудняет ремонт и смену электродов, а также снижает производительность электрокоагуляторов.

Повысить производительность электрокоагулятора, а также осуществить надежный электроконтакт возможно путем индуцирования тока в электролите сточных вод.

Наиболее близким к изобретению является электролизер [2] содержащий корпус с засыпным электродом, токопроводом в виде стержня, размещенного в засыпном электроде, и источник тока.

Так как в электролизере-аналоге осуществляется контакт электродов и обмотки с агрессивной средой сточных вод, то данное обстоятельство снижает надежность работы и срок службы электролизера-прототипа, а уменьшение полезного объема ванны из-за размещения электродов и дополнительных обмоток снижает производительность электролизера по прототипу. Предотвратить разрушение токоподвода в агрессивной среде сточных вод и увеличить производительность электрокоагулятора возможно путем электромагнитной индукции токов непосредственно в сточных водах.

С целью увеличения производительности и повышения надежности работы электрокоагулятора токоподвод выполнен в виде трехфазного магнитопровода в изоляции, с первичной трехфазной обмоткой, размещенной за пределами ванны.

Так как вторичной обмоткой является электролит, то электрический ток индуцируется непосредственно в нем, что обуславливает повышение надежности электроконтакта.

На фиг. 1 показан индукционный электрокоагулятор; на фиг.2 индукционный трансформатор без вторичной обмотки; на фиг.3 то же, вертикальный разрез; на фиг.4 индукционный электрокоагулятор, вид сверху; на фиг.5 схема подключения электрокоагулятора к источнику питания; на фиг.6 условно двойными линиями показаны короткозамкнутые контуры индукционных токов в электролите сточных вод вокруг стержней магнитопровода.

Индукционный электрокоагулятор состоит из корпуса 1, поддерживающей решетки 2, установленной на уголки 3, трехфазного магнитопровода 4 с первичной обмоткой 5, для отвода очищенной воды предусмотрен штуцер 6, отвод шлама производится через штуцер 7. Стержни трехфазного магнитопровода 4 ярма 8, расположенные в рабочей зоне электрокоагулятора, выполнены с изоляцией 9 во избежание коррозии и растворения в электролите сточных вод.

Индукционный электрокоагулятор работает следующим образом.

Индукционный электрокоагулятор для очистки сточных вод с содержанием хрома работает следующим образом: сверху в электрокоагулятор засыпается стальной лом (стружка), заливается сточная вода (электролит), выводы первичной обмотки 5 трансформатора подключаются к трехфазной сети, при этом в электролите наводится ЭДС, обеспечивая циркуляцию токов индукции в электролите вокруг стержней.

При подключении электрокоагулятора к источнику питания происходит растворение железа, в сточной воде ионы железа взаимодействуют с ионами Cr+6, восстанавливая Cr+6 до Cr+3, и способствуют выпадению их в виде гидроокисей Cr(OH)3.

Под действием силы тяжести Cr(OH)3 в виде взвесей оседает в нижней части электрокоагулятора и отводится через патрубок 9.

Очищенная вода отводится через штуцер 6, шлам через штуцер 7. Сточная вода подается периодически или непрерывно по заданному расходу. Операции по описанному повторяют в течение процесса очистки сточной воды. Электрокоагулятор может работать в непрерывном режиме. По мере расхода железных отходов производится их добавка в соответствии с заданным расходом.

Формула изобретения

Электрокоагулятор, содержащий корпус с размещенными в нем засыпным электродом и токопроводом, и источник тока, отличающийся тем, что корпус снабжен решеткой, а токопровод выполнен в виде трехфазного магнитопровода, первичная обмотка которого размещена снаружи корпуса и соединена с источником трехфазного тока, при этом часть магнитопровода расположена внутри корпуса и выполнена изолированной.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к устройствам для электрохимической обработки жидкости

Изобретение относится к технологии очистки воды и может быть использовано при промысловой подготовке сточных вод для нагнетания их в пласты

Изобретение относится к технологии очистки воды и может быть использовано при промысловой подготовке сточных вод для нагнетания их в пласты

Изобретение относится к способам и устройствам для очистки жидкостей

Изобретение относится к технологии очистки сточных вод от хрома (VI и III) и может быть использовано в производстве хромированных изделий и получении электролитического хрома

Изобретение относится к области гидромеханизации, а именно: к сгустительным аппаратам угольной гидросмеси и осветления оборотной воды
Изобретение относится к способам разрушения смеси отработанных маслоэмульсионных промышленных стоков (ОМЭС) и содового раствора, используемых в качестве смазочно-охлаждающих жидкостей при обработке металлов в химической промышленности, и может найти применение при очистке сточных вод в машиностроительной, химической и металлургической промышленностях
Изобретение относится к способам разрушения смеси отработанных маслоэмульсионных промышленных стоков (ОМЭС) и содового раствора, используемых в качестве смазочно-охлаждающих жидкостей при обработке металлов в химической промышленности, и может найти применение при очистке сточных вод в машиностроительной, химической и металлургической промышленностях

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх